Multiple soliton solutions of the dispersive long-wave equations

被引:44
作者
Zhang, JF [1 ]
机构
[1] Zhejiang Univ Technol, Res Ctr Engn Sci, Hangzhou 310032, Peoples R China
[2] Zhejiang Normal Univ, Inst Nonlinear Phys, Dept Phys, Jinhua 321004, Peoples R China
来源
CHINESE PHYSICS LETTERS | 1999年 / 16卷 / 01期
关键词
D O I
10.1088/0256-307X/16/1/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a simple homogeneous balance method, which is very concise and primary, we find the multiple soliton solutions of the dispersive long-wave equations. The method can be generalized to deal with the higher dimensional dispersive long-wave equations and other class of nonlinear equation.
引用
收藏
页码:4 / 5
页数:2
相关论文
共 8 条
[1]  
Benney D.J., 1964, Journal of Mathematics and Physics, V43, P309, DOI [10.1002/sapm1964431309, DOI 10.1002/SAPM1964431309]
[2]  
BOTIT M, 1987, INVERSE PROBLEM, V3, P371
[3]   APPROXIMATE EQUATIONS FOR LONG WATER WAVES [J].
BROER, LJF .
APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05) :377-395
[4]   HIGHER-ORDER WATER-WAVE EQUATION AND METHOD FOR SOLVING IT [J].
KAUP, DJ .
PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (02) :396-408
[5]  
LOU SY, 1995, MATH METHOD APPL SCI, V18, P789, DOI 10.1002/mma.1670181004
[6]   SYMMETRIES AND ALGEBRAS OF THE INTEGRABLE DISPERSIVE LONG-WAVE EQUATIONS IN (2+1)-DIMENSIONAL SPACES [J].
LOU, SY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (09) :3235-3243
[7]  
PAQUIN G, 1986, J MATH PHYS, V27, P1225
[8]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172