Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization

被引:42
作者
Lin, Huibin [1 ]
Wu, Fangtan [1 ]
He, Guolin [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510540, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature enhancement; Total variation; Nonconvex regularization; Rolling bearing; FEATURE-EXTRACTION; ELEMENT BEARINGS; DECOMPOSITION; ALGORITHM; MODEL; DICTIONARY; ENTROPY;
D O I
10.1016/j.ymssp.2020.106790
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the past decade, sparse representation has received much attention in the field of fault diagnosis of rotating machinery. However, the effect of sparse representation largely depends on the signal-to-noise ratio (SNR) and constructed dictionary. To address these challenges, an impulsive feature enhancement method is proposed to improve the SNR of weak fault signal of rolling bearing firstly. Utilizing the structure characteristic of impulse response signal, that is, peaks and troughs appear alternately with the same intervals, a structure characteristic matrix is constructed for enhancing the weak impulse feature. Then, a Fused Moreau-enhanced Total Variation Denoising (FMTVD) penalty is developed to avoid the dictionary construction problem and induce the sparsity. The new cost function considers the sparsity of both the fault signal and its differential form, and its solution is derived according to the alternating direction method of multipliers (ADMM). By the two-step strategy, the weak fault features of rolling bearing that submerged in noise are extracted effectively. The performance of the presented method is verified using numerical simulation and practical rolling bearing data. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Fault diagnosis of rolling bearings based on impulse feature enhancement and time-frequency joint noise reduction
    Baoyu Huang
    Yongxiang Zhang
    Lei Zhao
    Hao Chen
    Journal of Mechanical Science and Technology, 2021, 35 : 1935 - 1944
  • [32] Fault diagnosis of rolling bearings based on impulse feature enhancement and time-frequency joint noise reduction
    Huang, Baoyu
    Zhang, Yongxiang
    Zhao, Lei
    Chen, Hao
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2021, 35 (05) : 1935 - 1944
  • [33] Fault diagnosis of rolling bearing based on feature reduction with global-local margin Fisher analysis
    Zhao, Xiaoli
    Jia, Minping
    NEUROCOMPUTING, 2018, 315 : 447 - 464
  • [34] Periodic feature oriented adapted dictionary free OMP for rolling element bearing incipient fault diagnosis
    Huang, Wentao
    Sun, Hongjian
    Luo, Jianing
    Wang, Weijie
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 126 : 137 - 160
  • [35] Fault Diagnosis of Rolling Bearing Based on Shift Invariant Sparse Feature and Optimized Support Vector Machine
    Yuan, Haodong
    Wu, Nailong
    Chen, Xinyuan
    Wang, Yueying
    MACHINES, 2021, 9 (05)
  • [36] A Novel Rolling Bearing Fault Diagnosis Method Based on Adaptive Feature Selection and Clustering
    Hou, Jingbao
    Wu, Yunxin
    Ahmad, Abdulrahaman Shuaibu
    Gong, Hai
    Liu, Lei
    IEEE ACCESS, 2021, 9 : 99756 - 99767
  • [37] Rolling Bearing Fault Diagnosis Method Base on Periodic Sparse Attention and LSTM
    An, Yiyao
    Zhang, Ke
    Liu, Qie
    Chai, Yi
    Huang, Xinghua
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12044 - 12053
  • [38] Multisensor Feature Fusion Based Rolling Bearing Fault Diagnosis Method
    Tong, Jinyu
    Liu, Cang
    Pan, Haiyang
    Zheng, Jinde
    COATINGS, 2022, 12 (06)
  • [39] Rolling bearing fault diagnosis based on manifold feature domain adaptation
    Zhou H.
    Huang T.
    Li Z.
    Zhong F.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (05): : 94 - 102
  • [40] Fault Feature Enhancement Method for Rolling Bearing Fault Diagnosis Based on Wavelet Packet Energy Spectrum and Principal Component Analysis
    Guo W.
    Zhao H.
    Li C.
    Li Y.
    Tang A.
    Binggong Xuebao/Acta Armamentarii, 2019, 40 (11): : 2370 - 2377