Balls and quasi-metrics: A space of homogeneous type modeling the real analysis related to the Monge-Ampere equation

被引:32
作者
Aimar, H [1 ]
Forzani, L
Toledano, R
机构
[1] UNL, FIQ, Dept Matemat, CONICET,Programa Especial Matemat Aplicada, Santa Fe, Argentina
[2] UNL, FCEF Q&N, Dept Matemat, CONICET,Programa Especial Matemat Aplicada, Santa Fe, Argentina
关键词
convex sets; real Monge-Ampere equation; covering lemmas; real variable theory; BMO;
D O I
10.1007/BF02498215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that having a quasi-metric on a given set X is essentially equivalent to have a family of subsets S(x, r) of X for which y is an element of S(x, r) implies both S(y, r) subset of S(x, Kr) and S(x, r) subset of S(y, Kr)for some constant K. As cut application, starting from the Monge-Ampere setting introduced in [3], we get a space of homogeneous type modeling the real analysis for such an equation.
引用
收藏
页码:377 / 381
页数:5
相关论文
共 5 条
[1]   ON CONTINUITY PROPERTIES OF FUNCTIONS WITH CONDITIONS ON THE MEAN-OSCILLATION [J].
AIMAR, H ;
FORZANI, L .
STUDIA MATHEMATICA, 1993, 106 (02) :139-151
[2]  
CAFFARELLI L, PROPERTIES SOLUTIONS
[3]   Real analysis related to the Monge-Ampere equation [J].
Caffarelli, LA ;
Gutierrez, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) :1075-1092
[4]  
Coifman R. R., 1970, REV UNION MAT ARGENT, V25, P137
[5]  
COIFMAN RR, 1972, LECT NOTES MATH, V242