Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

被引:412
作者
Ermida, Sofia L. [1 ,2 ]
Soares, Patricia [3 ]
Mantas, Vasco [3 ]
Goettsche, Frank-M [4 ]
Trigo, Isabel E. [1 ,2 ]
机构
[1] Inst Portugues Mar & Atmosfera IPMA, P-1749077 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Inst Dom Luiz IDL, P-1749016 Lisbon, Portugal
[3] Univ Coimbra, Dept Earth Sci, P-3030790 Coimbra, Portugal
[4] Karlsruhe Inst Technol KIT, Inst Meteorol & Climate Res IMK ASF, D-76021 Karlsruhe, Germany
关键词
Land Surface Temperature; Landsat; Google Earth Engine; ASTER GED; high resolution; FRACTIONAL VEGETATION COVER; MONO-WINDOW ALGORITHM; SPATIAL-PATTERN; RETRIEVAL; VALIDATION; TM; PRODUCTS; EVAPOTRANSPIRATION; GENERATION; LANDSCAPE;
D O I
10.3390/rs12091471
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.
引用
收藏
页数:21
相关论文
共 75 条
[51]   Estimation of air temperature from remotely sensed surface observations [J].
Prihodko, L ;
Goward, SN .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (03) :335-346
[52]   Mapping finer-resolution land surface emissivity using Landsat images in China [J].
Ren, Huazhong ;
Liu, Rongyuan ;
Qin, Qiming ;
Fan, Wenjie ;
Yu, Le ;
Du, Chen .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (13) :6764-6781
[53]   The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data [J].
Rogan, John ;
Ziemer, Martha ;
Martin, Deborah ;
Ratick, Samuel ;
Cuba, Nicholas ;
DeLauer, Verna .
APPLIED GEOGRAPHY, 2013, 45 :49-57
[54]   Emissivity measurements of several soils and vegetation types in the 8-14 mu m wave band: Analysis of two field methods [J].
Rubio, E ;
Caselles, V ;
Badenas, C .
REMOTE SENSING OF ENVIRONMENT, 1997, 59 (03) :490-521
[55]   An update on the RTTOV fast radiative transfer model (currently at version 12) [J].
Saunders, Roger ;
Hocking, James ;
Turner, Emma ;
Rayer, Peter ;
Rundle, David ;
Brunel, Pascal ;
Vidot, Jerome ;
Roquet, Pascale ;
Matricardi, Marco ;
Geer, Alan ;
Bormann, Niels ;
Lupu, Cristina .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (07) :2717-2732
[56]   Land surface temperature retrieval from LANDSAT TM 5 [J].
Sobrino, JA ;
Jiménez-Muñoz, JC ;
Paolini, L .
REMOTE SENSING OF ENVIRONMENT, 2004, 90 (04) :434-440
[57]  
SPEETZEN H, 1988, TROPENLANDWIRT, V89, P33
[58]  
Sun DL, 2004, J APPL METEOROL, V43, P363, DOI 10.1175/1520-0450(2004)043<0363:LSTEFT>2.0.CO
[59]  
2
[60]  
Sun L, 2013, INT CONF AGRO-GEOINF, P319, DOI 10.1109/Argo-Geoinformatics.2013.6621929