Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

被引:412
作者
Ermida, Sofia L. [1 ,2 ]
Soares, Patricia [3 ]
Mantas, Vasco [3 ]
Goettsche, Frank-M [4 ]
Trigo, Isabel E. [1 ,2 ]
机构
[1] Inst Portugues Mar & Atmosfera IPMA, P-1749077 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Inst Dom Luiz IDL, P-1749016 Lisbon, Portugal
[3] Univ Coimbra, Dept Earth Sci, P-3030790 Coimbra, Portugal
[4] Karlsruhe Inst Technol KIT, Inst Meteorol & Climate Res IMK ASF, D-76021 Karlsruhe, Germany
关键词
Land Surface Temperature; Landsat; Google Earth Engine; ASTER GED; high resolution; FRACTIONAL VEGETATION COVER; MONO-WINDOW ALGORITHM; SPATIAL-PATTERN; RETRIEVAL; VALIDATION; TM; PRODUCTS; EVAPOTRANSPIRATION; GENERATION; LANDSCAPE;
D O I
10.3390/rs12091471
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.
引用
收藏
页数:21
相关论文
共 75 条
[1]   Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran [J].
Amiri, Reza ;
Weng, Qihao ;
Alimohammadi, Abbas ;
Alavipanah, Seyed Kazem .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (12) :2606-2617
[2]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[3]  
[Anonymous], 2018, IEEE T GEOSCI REMOTE, DOI DOI 10.1109/TGRS.2018.2824828
[4]  
[Anonymous], 2019, LANDSAT COLLECTION 1
[5]  
[Anonymous], SENSING, DOI DOI 10.1080/01431160010006971
[6]   An update on SURFRAD - The GCOS Surface Radiation budget network for the continental United States [J].
Augustine, JA ;
Hodges, GB ;
Cornwall, CR ;
Michalsky, JJ ;
Medina, CI .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2005, 22 (10) :1460-1472
[7]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626
[8]   Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration [J].
Bindhu, V. M. ;
Narasimhan, B. ;
Sudheer, K. P. .
REMOTE SENSING OF ENVIRONMENT, 2013, 135 :118-129
[9]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[10]   Thermal band selection for the PRISM instrument .1. Analysis of emissivity-temperature separation algorithms [J].
Caselles, V ;
Valor, E ;
Coll, C ;
Rubio, E .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D10) :11145-11164