Hopf algebra structure on packed square matrices

被引:4
作者
Cheballah, Hayat [1 ]
Giraudo, Samuele [2 ]
Maurice, Remi [2 ]
机构
[1] GREYC CNRS UMR 6072, F-14032 Caen, France
[2] Univ Paris Est, Lab Informat Gaspard Monge, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
Hopf algebra; Permutation; Uniform block permutation; Alternating sign matrix; Six-vertex model; ALTERNATING-SIGN MATRICES; QUASI-SYMMETRIC FUNCTIONS; BINARY SEARCH-TREES;
D O I
10.1016/j.jcta.2015.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a new bigraded Hopf algebra whose bases are indexed by square matrices with entries in the alphabet {0, 1 ,..., k}, k >= 1, without null rows or columns. This Hopf algebra generalizes the one of permutations of Malvenuto and Reutenauer, the one of k-colored permutations of Novelli and Thibon, and the one of uniform block permutations of Aguiar and Orellana. We study the algebraic structure of our Hopf algebra and show, by exhibiting multiplicative bases, that it is free. We moreover show that it is self-dual and admits a bidendriform bialgebra structure. Besides, as a Hopf subalgebra, we obtain a new one indexed by alternatirig sign matrices. We study some of its properties and algebraic quotients defined through alternating sign matrices statistics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 182
页数:44
相关论文
共 37 条
[1]   The Hopf algebra of uniform block permutations [J].
Aguiar, Marcelo ;
Orellana, Rosa C. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) :115-138
[2]  
[Anonymous], THESIS U MARNE LA VA
[3]  
[Anonymous], 1963, Mathematiques et Sciences Humaines
[4]  
[Anonymous], 2012, Sage for power users
[5]  
[Anonymous], The on-line encyclopedia of integer sequences, DOI DOI 10.1371/journal.pone.0096223
[6]  
Baxter R. J., 2008, DOVER BOOKS PHYS
[7]  
Behrend R.E., 2008, ELECTRON J COMB, V15, P60
[8]   ALTERNATING-SIGN MATRICES [J].
BOUSQUETMELOU, M ;
HABSIEGER, L .
DISCRETE MATHEMATICS, 1995, 139 (1-3) :57-72
[9]  
Bressoud D M., 1999, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture
[10]   Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras [J].
Duchamp, G ;
Hivert, F ;
Thibon, JY .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (05) :671-717