A compactness theorem for scalar-flat metrics on manifolds with boundary

被引:41
作者
Almaraz, Sergio de Moura [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020140 Niteroi, RJ, Brazil
关键词
Primary: 35J65; Secondary: 53C21;
D O I
10.1007/s00526-010-0365-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M (n) , g) be a compact Riemannian manifold with boundary a,M. This paper is concerned with the set of scalar-flat metrics which are in the conformal class of g and have a,M as a constant mean curvature hypersurface. We prove that this set is compact for dimensions n a parts per thousand yen 7 under the generic condition that the trace-free 2nd fundamental form of a,M is nonzero everywhere.
引用
收藏
页码:341 / 386
页数:46
相关论文
共 42 条
[1]   On the Yamabe problem and the scalar curvature problems under boundary conditions [J].
Ambrosetti, A ;
Li, YY ;
Malchiodi, A .
MATHEMATISCHE ANNALEN, 2002, 322 (04) :667-699
[2]  
[Anonymous], 1991, DIFFERENTIAL GEOMETR, V52, P311
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]  
AUBIN T., 1998, SPRINGER MONOGRAPHS
[5]   Non-compactness and multiplicity results for the Yamabe problem on Sn [J].
Berti, M ;
Malchiodi, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) :210-241
[6]  
Brendle S, 2008, J AM MATH SOC, V21, P951
[7]   Convergence of the Yamabe flow in dimension 6 and higher [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2007, 170 (03) :541-576
[8]  
Brendle S, 2009, J DIFFER GEOM, V81, P225
[9]  
Chen CC, 1998, J DIFFER GEOM, V49, P115
[10]   NONLINEAR NEUMANN PROBLEMS ON RIEMANNIAN-MANIFOLDS [J].
CHERRIER, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (02) :154-206