Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum

被引:115
作者
Pollock, GS
Vernon, E
Forbes, ME
Yan, Q
Ma, YT
Hsieh, T
Robichon, R
Frost, DO
Johnson, JE
机构
[1] Univ Maryland, Sch Med, Dept Pharmacol & Expt Therapeut, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Dept Anesthesiol, Baltimore, MD 21201 USA
[3] Univ Maryland, Sch Med, Neurosci Program, Baltimore, MD 21201 USA
[4] Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA
[5] Amgen Inc, Dept Neurosci, Thousand Oaks, CA 91320 USA
关键词
neurotrophin; development; deprivation; brain-derived neurotrophic factor; visual cortex; superior colliculus; plasticity; dark rearing; light rearing; rat; hamster;
D O I
10.1523/JNEUROSCI.21-11-03923.2001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The expression of brain-derived neurotrophic factor (BDNF) mRNA and the secretion of BDNF protein are tightly regulated by neuronal activity. Thus, BDNF has been proposed as a mediator of activity-dependent neural plasticity. Previous studies showed that dark rearing (DR) reduces BDNF mRNA levels in the primary visual cortex (V1), but the effects of visual experience on BDNF protein levels are unknown. We report that rearing in constant light or DR alters BDNF mRNA and protein levels in the retina, superior colliculus (SC), V1, hippocampus (HIPP), and cerebellum (CBL), although the changes in mRNA and protein are not always correlated. Most notably, DR increases BDNF protein levels in V1 although BDNF mRNA is decreased. BDNF protein levels also undergo diurnal changes. In the retina, V1, and SC, BDNF protein levels are higher during the light phase of the circadian cycle than during the dark phase. By contrast, in HIPP and CBL, the tissue concentration of BDNF protein is higher during the dark phase. The discrepancies between the experience-dependent changes in BDNF mRNA and protein suggest that via its effects on neuronal activity, early sensory experience alters the trafficking, as well as the synthesis, of BDNF protein. The circadian changes in BDNF protein suggest that BDNF could cause the diurnal modulation of synaptic efficacy in some neural circuits. The fluctuations in BDNF levels in nonvisual structures suggest a potential role of BDNF in mediating plasticity induced by hormones or motor activity.
引用
收藏
页码:3923 / 3931
页数:9
相关论文
共 110 条
[1]  
ALLENDOERFER KL, 1994, J NEUROSCI, V14, P1795
[2]   Anterograde transport of brain-derived neurotrophic factor and its role in the brain [J].
Altar, CA ;
Cai, N ;
Bliven, T ;
Juhasz, M ;
Conner, JM ;
Acheson, AL ;
Lindsay, RM ;
Wiegand, SJ .
NATURE, 1997, 389 (6653) :856-860
[3]   The depolarisation-induced release of [I-125]BDNF from brain tissue [J].
AndroutsellisTheotokis, A ;
McCormack, WJ ;
Bradford, HF ;
Stern, GM ;
PliegoRivero, FB .
BRAIN RESEARCH, 1996, 743 (1-2) :40-48
[4]   Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ [J].
Balkowiec, A ;
Katz, DM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (19) :7417-7423
[5]   A PHYSIOLOGICAL-BASIS FOR A THEORY OF SYNAPSE MODIFICATION [J].
BEAR, MF ;
COOPER, LN ;
EBNER, FF .
SCIENCE, 1987, 237 (4810) :42-48
[6]   THE EFFECTS OF DARK-REARING ON THE ELECTROPHYSIOLOGY OF THE RAT VISUAL-CORTEX [J].
BENEVENTO, LA ;
BAKKUM, BW ;
PORT, JD ;
COHEN, RS .
BRAIN RESEARCH, 1992, 572 (1-2) :198-207
[7]   GAMMA-AMINOBUTYRIC-ACID AND SOMATOSTATIN IMMUNOREACTIVITY IN THE VISUAL-CORTEX OF NORMAL AND DARK-REARED RATS [J].
BENEVENTO, LA ;
BAKKUM, BW ;
COHEN, RS .
BRAIN RESEARCH, 1995, 689 (02) :172-182
[8]   Hippocampal BDNF mRNA shows a diurnal regulation, primarily in the exon III transcript [J].
Berchtold, NC ;
Oliff, HS ;
Isackson, P ;
Cotman, CW .
MOLECULAR BRAIN RESEARCH, 1999, 71 (01) :11-22
[9]   GLUTAMATE RECEPTOR AGONISTS ENHANCE THE EXPRESSION OF BDNF MESSENGER-RNA IN CULTURED CEREBELLAR GRANULE CELLS [J].
BESSHO, Y ;
NAKANISHI, S ;
NAWA, H .
MOLECULAR BRAIN RESEARCH, 1993, 18 (03) :201-208
[10]   THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX [J].
BIENENSTOCK, EL ;
COOPER, LN ;
MUNRO, PW .
JOURNAL OF NEUROSCIENCE, 1982, 2 (01) :32-48