Detecting pro-p-groups that are not absolute Galois groups

被引:17
作者
Benson, Dave [1 ]
Lemire, Nicole
Minac, Jan [2 ]
机构
[1] Univ Aberdeen, Dept Math Sci, Kings Coll, Aberdeen AB24 3UE, Scotland
[2] Univ Western Ontario, Dept Math, Middlesex Coll, London, ON N6A 5B7, Canada
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2007年 / 613卷
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/CRELLE.2007.096
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime. It is a fundamental problem to classify the absolute Galois groups G(F) of fields F containing a primitive pth root of unity xi(p). In this paper we present several constraints on such GF, using restrictions on the cohomology of index p normal subgroups from [LMS]. In section 1 we classify all maximal p-elementary abelian-by-order p quotients of these G(F). In the case p > 2, each such quotient contains a unique closed index p elementary abelian subgroup. This seems to be the first case in which one can completely classify nontrivial quotients of absolute Galois groups by characteristic subgroups of normal subgroups. In section 2 we derive analogues of theorems of Artin-Schreier and Becker for order p elements of certain small quotients of GF. Finally, in section 3 we construct a new family of pro-p-groups which are not absolute Galois groups over any field F.
引用
收藏
页码:175 / 191
页数:17
相关论文
共 19 条
[1]   On cyclic fields [J].
Albert, A. Adrian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 37 (1-3) :454-462
[2]  
[Anonymous], SPRINGER MONOGR MATH
[3]  
[Anonymous], 1983, IZV AKAD NAUK SSSR M
[4]  
BECKER E, 1974, J REINE ANGEW MATH, V268, P41
[5]  
BENSON D, ARXIVMATHNT0610632
[6]  
BENSON D, UNPUB P SYLOW SUBGRO
[7]   PSEUDOCOMPACT ALGEBRAS PROFINITE GROUPS AND CLASS FORMATIONS [J].
BRUMER, A .
JOURNAL OF ALGEBRA, 1966, 4 (03) :442-&
[8]  
DOUADY A, 1964, ACAD SCI PARIS, V258, P5305
[9]  
HOECHSMANN K, 1968, J REINE ANGEW MATH, V229, P81
[10]   Solvable absolute Galois groups are metabelian [J].
Koenigsmann, J .
INVENTIONES MATHEMATICAE, 2001, 144 (01) :1-22