Nonlocal maximum principles for active scalars

被引:64
作者
Kiselev, Alexander [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Fluid mechanics; Active scalar; Maximum principle; Regularity of solutions; Surface quasigeostrophic equation; QUASI-GEOSTROPHIC EQUATION; GLOBAL WELL-POSEDNESS; TRANSPORT-EQUATION; BURGERS-EQUATION; BLOW-UP; REGULARITY; VELOCITY;
D O I
10.1016/j.aim.2011.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Active scalars appear in many problems of fluid dynamics. The most common examples of active scalar equations are 2D Euler, Burgers, and 2D surface quasi-geostrophic equations. Many questions about regularity and properties of solutions of these equations remain open. We develop the idea of nonlocal maximum principle introduced in Kiselev, Nazarov and Volberg (2007) [19] formulating a more general criterion and providing new applications. The most interesting application is finite time regularization of weak solutions in the supercritical regime. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1806 / 1826
页数:21
相关论文
共 23 条
[1]   On the global well-posedness of the critical quasi-geostrophic equation [J].
Abidi, Hammadi ;
Hmidi, Taoufik .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :167-185
[2]  
BOGDAM K, 2003, STUD MATH, V159, P163
[3]  
CAFFARELLI L, ARXIVMATH0608447
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Incompressible flow in porous media with fractional diffusion [J].
Castro, Angel ;
Cordoba, Diego ;
Gancedo, Francisco ;
Orive, Rafael .
NONLINEARITY, 2009, 22 (08) :1791-1815
[6]   EVENTUAL REGULARIZATION OF THE SLIGHTLY SUPERCRITICAL FRACTIONAL BURGERS EQUATION [J].
Chan, Chi Hin ;
Czubak, Magdalena ;
Silvestre, Luis .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) :847-861
[7]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[8]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[9]   Scaling exponents for active scalars [J].
Constantin, P .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) :571-595
[10]   Regularity of Holder continuous solutions of the supercritical quasi-geostrophic equation [J].
Constantin, Peter ;
Wu, Jiahong .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (06) :1103-1110