Anisotropic surface transport in topological insulators in proximity to a helical spin density wave

被引:18
作者
Li, Qiuzi [1 ,2 ]
Ghosh, Parag [3 ,4 ]
Sau, Jay D. [1 ,2 ]
Tewari, Sumanta [5 ]
Das Sarma, S. [1 ,2 ]
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[3] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[4] NIST, Gaithersburg, MD 20899 USA
[5] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 08期
关键词
SINGLE DIRAC CONE; BI2TE3;
D O I
10.1103/PhysRevB.83.085110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effects of spatially localized breakdown of time reversal symmetry on the surface of a topological insulator (TI) due to proximity to a helical spin density wave (HSDW). The HSDW acts like an externally applied one-dimensional periodic (magnetic) potential for spins on the surface of the TI, rendering the Dirac cone on the TI surface highly anisotropic. The decrease in group velocity along the direction (x) over cap of the applied spin potential is twice as great as that perpendicular to (x) over cap. At the Brillouin zone boundaries, it also gives rise to new semi-Dirac points that have a linear dispersion along (x) over cap but a quadratic dispersion perpendicular to (x) over cap. The group velocity of electrons at these new semi-Dirac points is also shown to be highly anisotropic. Experiments using TI systems on multiferroic substrates should realize our predictions. We further discuss the effects of other forms of spin density waves on the surface transport property of TIs.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
Analytis JG, 2010, NAT PHYS, V6, P960, DOI [10.1038/nphys1861, 10.1038/NPHYS1861]
[2]   Tight-Binding Modeling and Low-Energy Behavior of the Semi-Dirac Point [J].
Banerjee, S. ;
Singh, R. R. P. ;
Pardo, V. ;
Pickett, W. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (01)
[3]   Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals [J].
Butch, N. P. ;
Kirshenbaum, K. ;
Syers, P. ;
Sushkov, A. B. ;
Jenkins, G. S. ;
Drew, H. D. ;
Paglione, J. .
PHYSICAL REVIEW B, 2010, 81 (24)
[4]   Magnetism at the interface between ferromagnetic and superconducting oxides [J].
Chakhalian, J ;
Freeland, JW ;
Srajer, G ;
Strempfer, J ;
Khaliullin, G ;
Cezar, JC ;
Charlton, T ;
Dalgliesh, R ;
Bernhard, C ;
Cristiani, G ;
Habermeier, HU ;
Keimer, B .
NATURE PHYSICS, 2006, 2 (04) :244-248
[5]  
CHECKELSKY JG, ARXIV10033883
[6]   Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 [J].
Chen, Y. L. ;
Analytis, J. G. ;
Chu, J. -H. ;
Liu, Z. K. ;
Mo, S. -K. ;
Qi, X. L. ;
Zhang, H. J. ;
Lu, D. H. ;
Dai, X. ;
Fang, Z. ;
Zhang, S. C. ;
Fisher, I. R. ;
Hussain, Z. ;
Shen, Z. -X. .
SCIENCE, 2009, 325 (5937) :178-181
[7]   Multiferroics: a magnetic twist for ferroelectricity [J].
Cheong, Sang-Wook ;
Mostovoy, Maxim .
NATURE MATERIALS, 2007, 6 (01) :13-20
[8]   Two-dimensional surface charge transport in topological insulators [J].
Culcer, Dimitrie ;
Hwang, E. H. ;
Stanescu, Tudor D. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 82 (15)
[9]   Spin-orbit coupling and anomalous angular-dependent magnetoresistance in the quantum transport regime of PbS [J].
Eto, Kazuma ;
Taskin, A. A. ;
Segawa, Kouji ;
Ando, Yoichi .
PHYSICAL REVIEW B, 2010, 81 (16)
[10]   Inverse Spin-Galvanic Effect in the Interface between a Topological Insulator and a Ferromagnet [J].
Garate, Ion ;
Franz, M. .
PHYSICAL REVIEW LETTERS, 2010, 104 (14)