Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli

被引:7
作者
Liu, Likai [1 ]
Liu, Jin-Lin [2 ]
机构
[1] Nanjing Vocat Coll Informat Technol, Informat Technol Dept, Nanjing 210023, Peoples R China
[2] Yangzhou Univ, Dept Informat Sci, Yangzhou 225002, Jiangsu, Peoples R China
关键词
analytic function; differential subordination; starlike function; lemniscate of Bernoulli; Q-STARLIKE FUNCTIONS; SUBCLASS;
D O I
10.3390/axioms10030160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using differential subordination, we consider conditions of beta so that some multivalent analytic functions are subordinate to (1+z)(gamma) (0 < gamma <= 1). Notably, these results are applied to derive sufficient conditions for f is an element of A to satisfy the condition vertical bar(zf'(z)/f(z))(2) -1 vertical bar < 1. Several previous results are extended.
引用
收藏
页数:7
相关论文
共 17 条
[1]   DIFFERENTIAL SUBORDINATION FOR FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI [J].
Ali, Rosihan M. ;
Cho, Nak Eun ;
Ravichandran, V. ;
Kumar, S. Sivaprasad .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03) :1017-1026
[2]   On Booth lemniscate and starlike functions [J].
Kargar, Rahim ;
Ebadian, Ali ;
Sokol, Janusz .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) :143-154
[3]   Subordinations for Functions with Positive Real Part [J].
Kumar, Sushil ;
Ravichandran, V. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) :1179-1191
[4]  
Kumar S, 2016, SOUTHEAST ASIAN BULL, V40, P199
[5]  
Miller S.S., 2000, THEORY APPL
[6]   Differential superordination for harmonic complex-valued functions [J].
Oros, Georgia Irina ;
Oros, Gheorghe .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (04) :487-496
[7]   Differential Subordinations for Analytic Functions [J].
Raza, Mohsan ;
Sokol, Janusz ;
Mushtaq, Saima .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3) :883-890
[8]   On Certain Class of Bazilevic Functions Associated with the Lemniscate of Bernoulli [J].
Seoudy, Tamer M. ;
Shammaky, Amnah E. .
JOURNAL OF FUNCTION SPACES, 2020, 2020
[9]  
Sok J., 1996, Zeszyty Nauk. Politech. Rzeszowskiej Mat, V19, P101
[10]   Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis [J].
Srivastava, H. M. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (A1) :327-344