NON-LOCAL EUCLIDEAN MEDIANS SPARSE UNMIXING FOR HYPERSPECTRAL REMOTE SENSING IMAGERY

被引:0
作者
Feng, Ruyi [1 ]
Zhong, Yanfei [1 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Non-local Euclidean medians; non-local means; sparse unmixing; hyperspectral remote sensing imagery;
D O I
10.1109/IGARSS.2014.6947525
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse unmixing based on sparse representation theory has been successfully applied to hyperspectral remote sensing imagery. To better utilize the abundant spatial information and improve the unmixing accuracy, spatial sparse unmixing methods such as non-local sparse unmixing (NLSU) have been proposed. Although the NLSU method utilizes the non-local spatial information as its spatial regularization term, and obtains a satisfactory unmixing accuracy, the final abundances are affected by the non-local neighborhoods and drift away from the true abundance values when the hyperspectral images are contaminated by strong noise. To solve this problem, a non-local Euclidean medians sparse unmixing (NLEMSU) method is proposed to improve NLSU by replacing the non-local means total variation spatial consideration with non-local Euclidean medians filtering approach. The experimental results using simulated and real hyperspectral images indicate that NLEMSU outperforms the previous sparse unmixing algorithms and, hence, provides an effective option for the unmixing of hyperspectral remote sensing imagery.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[2]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[3]   Non-Local Euclidean Medians [J].
Chaudhury, Kunal N. ;
Singer, Amit .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (11) :745-748
[4]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[5]   Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [J].
Heinz, DC ;
Chang, CI .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03) :529-545
[6]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[7]   MUSIC-CSR: Hyperspectral Unmixing via Multiple Signal Classification and Collaborative Sparse Regression [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Somers, Ben .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07) :4364-4382
[8]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[9]  
Jimenez L. I., 2012, P INT C GEOGR OBJ BA, P1
[10]   A Signal Processing Perspective on Hyperspectral Unmixing [J].
Ma, Wing-Kin ;
Bioucas-Dias, Jose M. ;
Chan, Tsung-Han ;
Gillis, Nicolas ;
Gader, Paul ;
Plaza, Antonio J. ;
Ambikapathi, ArulMurugan ;
Chi, Chong-Yung .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :67-81