AI-Based Prediction of Myocardial Infarction Risk as an Element of Preventive Medicine

被引:2
作者
Rojek, Izabela [1 ]
Kozielski, Miroslaw [1 ]
Dorozynski, Janusz [1 ]
Mikolajewski, Dariusz [1 ]
机构
[1] Kazimierz Wielki Univ, Inst Comp Sci, PL-85064 Bydgoszcz, Poland
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 19期
关键词
machine learning; classification; model; cardiac diseases; cardiac infarction; risk factors; preventive analysis; COVID-19; MORTALITY; MODELS;
D O I
10.3390/app12199596
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Potential applications of the concepts and solutions presented in this article relate to AI-based preventive medicine systems and second opinion systems. The incidence of myocardial infarction (MI) is growing year on year around the world. It is considered increasingly necessary to detect the risks early, respond through preventive medicines and, only in the most severe cases, control the disease with more effective therapies. The aim of the project was to develop a relatively simple artificial-intelligence tool to assess the likelihood of a heart infarction for preventive medicine purposes. We used binary classification to determine from a wide variety of patient characteristics the likelihood of heart disease and, from a computational point of view, determine what the minimum set of characteristics permits. Factors with the highest positive influence were: cp, restecg and slope, whilst factors with the highest negative influence were sex, exang, oldpeak, ca, and thal. The novelty of the described system lies in the development of the AI for predictive analysis of cardiovascular function, and its future use in a specific patient is the beginning of a new phase in this field of research with a great opportunity to improve pre-clinical care and diagnosis, and accuracy of prediction in preventive medicine.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Dementia classification using MR imaging and clinical data with voting based machine learning models [J].
Bharati, Subrato ;
Podder, Prajoy ;
Dang Ngoc Hoang Thanh ;
Prasath, V. B. Surya .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (18) :25971-25992
[2]   A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework [J].
Biswas, Mainak ;
Saba, Luca ;
Omerzu, Tomaz ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Viskovic, Klaudija ;
Mavrogeni, Sophie ;
Laird, John R. ;
Pareek, Gyan ;
Miner, Martin ;
Balestrieri, Antonella ;
Sfikakis, Petros P. ;
Protogerou, Athanasios ;
Misra, Durga Prasanna ;
Agarwal, Vikas ;
Kitas, George D. ;
Kolluri, Raghu ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Ruzsa, Zoltan ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) :581-604
[4]  
Caie PD., 2021, Artificial Intelligence and Deep Learning in Pathology, DOI [DOI 10.1016/B978-0-323-67538-3.00008-7, 10.1016/B978-0-323-67538-3.00008-7]
[5]   Clinical Research Machine Learning Compared With Conventional Statistical Models for Predicting Myocardial Infarction Readmission and Mortality: A Systematic Review [J].
Cho, Sung Min ;
Austin, Peter C. ;
Ross, Heather J. ;
Abdel-Qadir, Husam ;
Chicco, Davide ;
Tomlinson, George ;
Taheri, Cameron ;
Foroutan, Farid ;
Lawler, Patrick R. ;
Billia, Filio ;
Gramolini, Anthony ;
Epelman, Slava ;
Wang, Bo ;
Lee, Douglas S. .
CANADIAN JOURNAL OF CARDIOLOGY, 2021, 37 (08) :1207-1214
[6]   Smart Wearables for Cardiac Monitoring-Real-World Use beyond Atrial Fibrillation [J].
Duncker, David ;
Ding, Wern Yew ;
Etheridge, Susan ;
Noseworth, Peter A. ;
Veltmann, Christian ;
Yao, Xiaoxi ;
Bunch, T. Jared ;
Gupta, Dhiraj .
SENSORS, 2021, 21 (07)
[7]  
Frenz W., 2022, HDB IND 4 0 LAW TECH
[8]   Editorial to 'The effect of high-intensity interval training on exercise capacity in post-myocardial infarction patients: a systematic review and meta-analysis' [J].
Giallauria, Francesco .
EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2022, 29 (03) :473-474
[9]  
Goto Shinichi, 2019, Circ Rep, V1, P481, DOI 10.1253/circrep.CR-19-0096
[10]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362