Gene-environment interaction identification via penalized robust divergence

被引:3
作者
Ren, Mingyang [1 ,2 ]
Zhang, Sanguo [1 ,2 ]
Ma, Shuangge [3 ]
Zhang, Qingzhao [4 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[2] Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
[3] Yale Sch Publ Hlth, Dept Biostat, New Haven, CT USA
[4] Xiamen Univ, Wang Yanan Inst Studies Econ, Sch Econ, Dept Stat & Data Sci,Fujian Key Lab Stat, Fujian 361005, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 北京市自然科学基金;
关键词
divergence; gene-environment interaction; hierarchical structure; penalized identification; robustness; PATHWAY; CANCER; ASSOCIATION; ACTIVATION; EXPRESSION;
D O I
10.1002/bimj.202000157
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In high-throughput cancer studies, gene-environment interactions associated with outcomes have important implications. Some commonly adopted identification methods do not respect the "main effect, interaction" hierarchical structure. In addition, they can be challenged by data contamination and/or long-tailed distributions, which are not uncommon. In this article, robust methods based on gamma-divergence and density power divergence are proposed to accommodate contaminated data/long-tailed distributions. A hierarchical sparse group penalty is adopted for regularized estimation and selection and can identify important gene-environment interactions and respect the "main effect, interaction" hierarchical structure. The proposed methods are implemented using an effective group coordinate descent algorithm. Simulation shows that when contamination occurs, the proposed methods can significantly outperform the existing alternatives with more accurate identification. The proposed approach is applied to the analysis of The Cancer Genome Atlas (TCGA) triple-negative breast cancer data and Gene Environment Association Studies (GENEVA) Type 2 Diabetes data.
引用
收藏
页码:461 / 480
页数:20
相关论文
共 55 条
  • [1] Adler RJ, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P133
  • [2] Exploring specific prognostic biomarkers in triple-negative breast cancer
    Bao, Chang
    Lu, Yunkun
    Chen, Jishun
    Chen, Danni
    Lou, Weiyang
    Ding, Bisha
    Xu, Liang
    Fan, Weimin
    [J]. CELL DEATH & DISEASE, 2019, 10 (11)
  • [3] Triple-negative breast cancer
    Bartsch R.
    Ziebermayr R.
    Zielinski C.C.
    Steger G.G.
    [J]. Wiener Medizinische Wochenschrift, 2010, 160 (7-8) : 174 - 181
  • [4] Robust and efficient estimation by minimising a density power divergence
    Basu, A
    Harris, IR
    Hjort, NL
    Jones, MC
    [J]. BIOMETRIKA, 1998, 85 (03) : 549 - 559
  • [5] SCD5-induced oleic acid production reduces melanoma malignancy by intracellular retention of SPARC and cathepsin B
    Bellenghi, Maria
    Puglisi, Rossella
    Pedini, Francesca
    De Feo, Alessandra
    Felicetti, Federica
    Bottero, Lisabianca
    Sangaletti, Sabina
    Errico, Maria Cristina
    Petrini, Marina
    Gesumundo, Cinzia
    Denaro, Massimo
    Felli, Nadia
    Pasquini, Luca
    Tripodo, Claudio
    Colombo, Mario Paolo
    Care, Alessandra
    Mattia, Gianfranco
    [J]. JOURNAL OF PATHOLOGY, 2015, 236 (03) : 315 - 325
  • [6] A LASSO FOR HIERARCHICAL INTERACTIONS
    Bien, Jacob
    Taylor, Jonathan
    Tibshirani, Robert
    [J]. ANNALS OF STATISTICS, 2013, 41 (03) : 1111 - 1141
  • [7] Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells
    Burnett, Riesa M.
    Craven, Kelly E.
    Krishnamurthy, Purna
    Goswami, Chirayu P.
    Badve, Sunil
    Crooks, Peter
    Mathews, William P.
    Bhat-Nakshatri, Poornima
    Nakshatri, Harikrishna
    [J]. ONCOTARGET, 2015, 6 (14) : 12682 - 12696
  • [8] ASPN and GJB2 Are Implicated in the Mechanisms of Invasion of Ductal Breast Carcinomas
    Castellana, Barbara
    Escuin, Daniel
    Peiro, Gloria
    Garcia-Valdecasas, Barbara
    Vazquez, Tania
    Pons, Cristina
    Perez-Olabarria, Maitane
    Barnadas, Agusti
    Lerma, Enrique
    [J]. JOURNAL OF CANCER, 2012, 3 : 175 - 183
  • [9] Replication of genome-wide association signals in Asian Indians with early-onset type 2 diabetes
    Chidambaram, Manickam
    Liju, Samuel
    Saboo, Banshi
    Sathyavani, Kumpatla
    Viswanathan, Vijay
    Pankratz, Nathan
    Gross, Myron
    Mohan, Viswanathan
    Radha, Venkatesan
    [J]. ACTA DIABETOLOGICA, 2016, 53 (06) : 915 - 923
  • [10] COPAS JB, 1988, J R STAT SOC B, V50, P225