Limiting dynamics for stochastic wave equations

被引:80
作者
Lv, Yan [2 ]
Wang, Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
random dynamical system; random attractor; singular perturbation; stochastic wave equation; stationary solution; tightness;
D O I
10.1016/j.jde.2007.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, relations between the asymptotic behavior for a stochastic wave equation and a heat equation are considered. By introducing almost surely D-alpha-contracting property for random dynamical systems, we obtain a global random attractor of the stochastic wave equation vu(tt)(v) + u(t)(v) - Delta u(v) + f (u(v)) = root v(W) over dot endowed with Dirichlet boundary condition for any 0 < v <= 1. The upper semicontinuity of this global random attractor and the global attractor of the heat equation z(t) - Delta z + f (z) = 0 with Dirichlet boundary condition as v goes to zero is investigated. Furthermore we show the stationary solutions of the stochastic wave equation converge in probability to some stationary solution of the heat equation. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 26 条
[1]  
Arnold L., 1998, Springer Monographs in Mathematics
[2]   Upper semicontinuity of attractors for small random perturbations of dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Robinson, JC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (9-10) :1557-1581
[3]   On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom [J].
Cerrai, S ;
Freidlin, M .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (03) :363-394
[4]  
Cheban D.N., 2004, INTERDISCIP MATH SCI, V1
[5]  
CHOW P, 1981, MULTIPLE SCATTERING
[6]  
Chow PL, 2002, ANN APPL PROBAB, V12, P361
[7]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[8]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[9]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[10]  
Duan JQ, 2003, ANN PROBAB, V31, P2109