Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence

被引:27
作者
Chevillard, Laurent [1 ]
机构
[1] Univ Claude Bernard, Univ Lyon, CNRS, Lab Phy,Ens Lyon, 46 Allee Italie, F-69342 Lyon, France
关键词
BROWNIAN-MOTION; PARTICLES;
D O I
10.1103/PhysRevE.96.033111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by the modeling of the temporal structure of the velocity field in a highly turbulent flow, we propose and study a linear stochastic differential equation that involves the ingredients of an Ornstein-Uhlenbeck process, supplemented by a fractional Gaussian noise, of parameter H, regularized over a (small) time scale epsilon > 0. A peculiar correlation between these two plays a key role in the establishment of the statistical properties of its solution. We show that this solution reaches a stationary regime, which marginals, including variance and increment variance, remain bounded when epsilon. 0. In particular, in this limit, for any H epsilon] 0,1[, we show that the increment variance behaves at small scales as the one of a fractional Brownian motion of same parameter H. From the theoretical side, this approach appears especially well suited to deal with the (very) rough case H < 1/2, including the boundary value H = 0, and to design simple and efficient numerical simulations.
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Biagini F, 2008, PROBAB APPL SER, P1
[2]   Spatiotemporal velocity-velocity correlation function in fully developed turbulence [J].
Canet, Leonie ;
Rossetto, Vincent ;
Wschebor, Nicolas ;
Balarac, Guillaume .
PHYSICAL REVIEW E, 2017, 95 (02)
[3]  
Cheridito P, 2003, Electron J Probab, V8, P1, DOI [10.1214/EJP.v8-125, DOI 10.1214/EJP.V8-125]
[4]   Intermittency of velocity time increments in turbulence -: art. no. 064501 [J].
Chevillard, L ;
Roux, SG ;
Lévêque, E ;
Mordant, N ;
Pinton, JF ;
Arnéodo, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[5]   A stochastic representation of the local structure of turbulence [J].
Chevillard, L. ;
Robert, R. ;
Vargas, V. .
EPL, 2010, 89 (05)
[6]   A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows [J].
Chevillard, Laurent ;
Castaing, Bernard ;
Arneodo, Alain ;
Leveque, Emmanuel ;
Pinton, Jean-Francois ;
Roux, Stephane G. .
COMPTES RENDUS PHYSIQUE, 2012, 13 (9-10) :899-928
[7]  
Duplantier B., 2017, LOG CORRELATED GAUSS, P191
[8]  
Frisch U., 1995, Turbulence
[9]   FRACTIONAL BROWNIAN MOTION WITH HURST INDEX H=0 AND THE GAUSSIAN UNITARY ENSEMBLE [J].
Fyodorov, Y. V. ;
Khoruzhenko, B. A. ;
Simm, N. J. .
ANNALS OF PROBABILITY, 2016, 44 (04) :2980-3031
[10]   Parameter estimation for fractional Ornstein-Uhlenbeck processes [J].
Hu, Yaozhong ;
Nualart, David .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) :1030-1038