Flowering time and elevated atmospheric CO2

被引:127
|
作者
Springer, Clint J. [1 ]
Ward, Joy K. [1 ]
机构
[1] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA
关键词
carbon metabolism; global change; plant development;
D O I
10.1111/j.1469-8137.2007.02196.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Flowering is a critical milestone in the life cycle of plants, and changes in the timing of flowering may alter processes at the species, community and ecosystem levels. Therefore understanding flowering-time responses to global change drivers, such as elevated atmospheric carbon dioxide concentrations, [CO2], is necessary to predict the impacts of global change on natural and agricultural ecosystems. Here we summarize the results of 60 studies reporting flowering-time responses (defined as the time to first visible flower) of both crop and wild species at elevated [CO2]. These studies suggest that elevated [CO2] will influence flowering time in the future. In addition, interactions between elevated [CO2] and other global change factors may further complicate our ability to predict changes in flowering time. One approach to overcoming this problem is to elucidate the primary mechanisms that control flowering-time responses to elevated [CO2]. Unfortunately, the mechanisms controlling these responses are not known. However, past work has indicated that carbon metabolism exerts partial control on flowering time, and therefore may be involved in elevated [CO2]-induced changes in flowering time. This review also indicates the need for more studies addressing the effects of global change drivers on developmental processes in plants.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [21] Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2
    Gill, RA
    Anderson, LJ
    Polley, HW
    Johnson, HB
    Jackson, RB
    ECOLOGY, 2006, 87 (01) : 41 - 52
  • [22] Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification
    Carnol, M
    Hogenboom, L
    Jach, ME
    Remacle, J
    Ceulemans, R
    GLOBAL CHANGE BIOLOGY, 2002, 8 (06) : 590 - 598
  • [23] A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture
    Prior, Stephen A.
    Runion, G. Brett
    Marble, S. Christopher
    Rogers, Hugo H.
    Gilliam, Charles H.
    Torbert, H. Allen
    HORTSCIENCE, 2011, 46 (02) : 158 - 162
  • [24] Predicting adaptive evolution under elevated atmospheric CO2 in the perennial grass Bromus erectus
    Steinger, Thomas
    Stephan, Andre
    Schmid, Bernhard
    GLOBAL CHANGE BIOLOGY, 2007, 13 (05) : 1028 - 1039
  • [25] ATMOSPHERIC CO2 AND THE RATIO OF INTERCELLULAR TO AMBIENT CO2 CONCENTRATIONS IN PLANTS
    EHLERINGER, JR
    CERLING, TE
    TREE PHYSIOLOGY, 1995, 15 (02) : 105 - 111
  • [26] What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2?
    Rillig, MC
    Allen, MF
    MYCORRHIZA, 1999, 9 (01) : 1 - 8
  • [27] What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2?
    M. C. Rillig
    Michael F. Allen
    Mycorrhiza, 1999, 9 : 1 - 8
  • [28] Aphid response to elevated ozone and CO2
    Holopainen, JK
    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, 2002, 104 (01) : 137 - 142
  • [29] Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris
    Cowling, SA
    Sage, RF
    PLANT CELL AND ENVIRONMENT, 1998, 21 (04) : 427 - 435
  • [30] Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought
    Wall, GW
    Brooks, TJ
    Adam, R
    Cousins, AB
    Kimball, BA
    Pinter, PJ
    LaMorte, RL
    Triggs, L
    Ottman, MJ
    Leavitt, SW
    Matthias, AD
    Williams, DG
    Webber, AN
    NEW PHYTOLOGIST, 2001, 152 (02) : 231 - 248