Modified Kudryashov method for finding exact solitary wave solutions of higher-order nonlinear equations

被引:91
作者
Kabir, M. M. [1 ]
Khajeh, A. [1 ]
Aghdam, E. Abdi [2 ]
Koma, A. Yousefi [3 ]
机构
[1] Islamic Azad Univ, Aliabad Katoul Branch, Dept Engn, Golestan, Iran
[2] Univ Mohaghegh Ardabili, Dept Mech Engn, Ardebil, Iran
[3] Univ Tehran, Coll Engn, Fac Mech Engn, Adv Dynam & Control Syst Lab, Tehran 14174, Iran
关键词
modified Kudryashov method; rational exp-function method; Kuramoto-Sivashinsky equation; seventh-order Sawada-Kotera equation; soliton; traveling wave solution; EXP-FUNCTION METHOD; VARIATIONAL ITERATION METHOD; GENERAL BURGERS-FISHER; KURAMOTO-SIVASHINSKY; SCHRODINGER-EQUATION; SCATTERING; EVOLUTION; KAWAHARA;
D O I
10.1002/mma.1349
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the modified Kudryashov method or the rational Exp-function method to construct the solitary traveling wave solutions of the Kuramoto-Sivashinsky (shortly KS) and seventh-order Sawada-Kotera (shortly sSK) equations. These equations play a very important role in the mathematical physics and engineering sciences. Recently, Noor et al. (Noor MA, Mohyud-Din, Waheed, J. Appl. Math. Comput. 2009; 29: 1-13) used the exp-function method to obtain some periodic and generalized solitary wave solutions of the KS equation. Our results improve the recent results of Noor et al. and others. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 50 条
  • [31] New application of the (G′/G)-expansion method to higher-order nonlinear equations
    Gao, Hua
    Zhao, Rong-Xia
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) : 2781 - 2786
  • [32] Exact Solutions of the Higher Order Nonlinear Schrodinger Equation
    Luo, Tianqi
    Huang, Xin
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 19 - 22
  • [33] Modulation instability in higher-order nonlinear Schrodinger equations
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    Chang, Wonkeun
    CHAOS, 2018, 28 (12)
  • [34] Jacobi elliptic solutions, soliton solutions and other solutions to four higher-order nonlinear Schrodinger equations using two mathematical methods
    Zayed, Elsayed M. E.
    Elshater, Mona E. M.
    OPTIK, 2017, 131 : 1044 - 1062
  • [35] Bifurcation and the exact smooth, cusp solitary and periodic wave solutions of the generalized Kudryashov-Sinelshchikov equation
    Liu, XiaoHua
    RICERCHE DI MATEMATICA, 2021, 70 (02) : 461 - 477
  • [36] A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions
    Guo, Rui
    Zhao, Hui-Hui
    Wang, Yuan
    NONLINEAR DYNAMICS, 2016, 83 (04) : 2475 - 2484
  • [37] Conservation Laws, Hamiltonian Structure, Modulational Instability Properties and Solitary Wave Solutions for a Higher-Order Model Describing Nonlinear Internal Waves
    Swaters, G. E.
    Dosser, H. V.
    Sutherland, B. R.
    STUDIES IN APPLIED MATHEMATICS, 2012, 128 (02) : 159 - 182
  • [38] Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method
    Kumar, Ranjit
    Kaushal, R. S.
    Prasad, Awadhesh
    PRAMANA-JOURNAL OF PHYSICS, 2010, 75 (04): : 607 - 616
  • [39] Solitary wave interactions in lattice systems with pure higher-order nonlinearity
    Wen, Zhenying
    Hu, Bambi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (04) : 595 - 601
  • [40] New Exact and Solitary Wave Solutions of Nonlinear Schamel–KdV Equation
    Tariq K.U.
    Rezazadeh H.
    Zubair M.
    Osman M.S.
    Akinyemi L.
    International Journal of Applied and Computational Mathematics, 2022, 8 (3)