Study of time fractional order problems with proportional delay and controllability term via fixed point approach

被引:5
|
作者
Sher, Muhammad [1 ]
Shah, Kamal [1 ]
Khan, Zareen A. [2 ]
机构
[1] Univ Malakand, Dept Math, Khyber Pakhtunkhawa, Pakistan
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Math Sci, Riyadh, Saudi Arabia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 05期
关键词
time fractional order problems with proportional delay; controllability term; fixed point approach; EXISTENCE; EQUATIONS; STABILITY;
D O I
10.3934/math.2021317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current manuscript, we are tying to study one of the important class of differential equations known is evolution equations. Here, we considered the problem under controllability term and with proportional delay. Before going to numerical or analytical solution it is important to check the existence and uniqueness of the solution. So, we will consider our problem for qualitative theory using fixed point theorems of Banach's and Krasnoselskii's type. For numerical solution the stability is important, hence the problem is also studied for Ulam-Hyer's type stability. At the end an example is constructed to ensure the establish results.
引用
收藏
页码:5387 / 5396
页数:10
相关论文
共 50 条
  • [31] Stability and stabilizability analysis of fractional-order time-varying delay systems via diffusive representation
    Boukal, Y.
    Zasadzinski, M.
    Darouach, M.
    Radhy, N. E.
    2016 5TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2016, : 262 - 266
  • [32] Chaos Control for a Fractional-Order Jerk System via Time Delay Feedback Controller and Mixed Controller
    Xu, Changjin
    Liao, Maoxin
    Li, Peiluan
    Yao, Lingyun
    Qin, Qiwen
    Shang, Youlin
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [33] Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equations
    Zhao, Kaihong
    Gong, Ping
    BOUNDARY VALUE PROBLEMS, 2015,
  • [34] Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term
    Ali, M. Syed
    Narayanan, G.
    Saroha, Sumit
    Priya, Bandana
    Thakur, Ganesh Kumar
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 : 468 - 485
  • [35] A Comparative Approach for Time-Delay Fractional Optimal Control Problems: Discrete Versus Continuous Chebyshev Polynomials
    Moradi, Leila
    Mohammadi, Fakhrodin
    ASIAN JOURNAL OF CONTROL, 2020, 22 (01) : 204 - 216
  • [36] Consensus of fractional-order multi-agent systems via current and time-delay states feedback
    Pan, Huan
    Yu, Xinghuo
    Guo, Ling
    Xue, Li
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (10) : 2110 - 2120
  • [37] Exponential stability criterion of high-order BAM neural networks with delays and impulse via fixed point approach
    Pu, Zhilin
    Rao, Ruofeng
    NEUROCOMPUTING, 2018, 292 : 63 - 71
  • [38] Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices
    Area, Ivan
    Godoy, Eduardo
    Nieto, Juan J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [39] A STUDY OF GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH STEILTJES-TYPE FRACTIONAL INTEGRAL BOUNDARY CONDITIONS VIA FIXED-POINT THEORY
    Ahmad, Bashir
    Alghanmi, Madeaha
    Alsaedi, Ahmed
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1208 - 1221
  • [40] SUM-OF-SQUARES APPROACH FOR MODELING AND CONTROL OF HAIL POWER SYSTEM WITH TIME DELAY AND CONFORMABLE FRACTIONAL-ORDER DERIVATIVE
    Kahouli, Omar
    Gassara, Hamdi
    Albadran, Saleh
    EL Hajjaji, Ahmed
    BEN Makhlouf, Abdellatif
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,