Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

被引:54
作者
Alber, Mark [1 ]
Chen, Nan
Lushnikov, Pavel M.
Newman, Stuart A.
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46656 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[3] LD Landau Theoret Phys Inst, Moscow 119334, Russia
[4] New York Med Coll, Dept Cell Biol & Anat, Valhalla, NY 10595 USA
关键词
D O I
10.1103/PhysRevLett.99.168102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a continuous limit of a two-dimensional stochastic cellular Potts model (CPM) describing cells moving in a medium and reacting to each other through direct contact, cell-cell adhesion, and long-range chemotaxis. All coefficients of the general macroscopic model in the form of a Fokker-Planck equation describing evolution of the cell probability density function are derived from parameters of the CPM. A very good agreement is demonstrated between CPM Monte Carlo simulations and a numerical solution of the macroscopic model. It is also shown that, in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. A general multiscale approach is demonstrated by simulating spongy bone formation, suggesting that self-organizing physical mechanisms can account for this developmental process.
引用
收藏
页数:4
相关论文
共 26 条
[1]  
ALBER M, 2007, SINGLE CELL BASED MO, P53
[2]   Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description [J].
Alber, Mark ;
Chen, Nan ;
Glimm, Tilmann ;
Lushnikov, Pavel M. .
PHYSICAL REVIEW E, 2006, 73 (05)
[4]  
[Anonymous], 1990, HDB STOCHASTIC METHO
[5]  
[Anonymous], 1987, BONE MINER RES
[6]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[7]   Diffusion, attraction and collapse [J].
Brenner, MP ;
Constantin, P ;
Kadanoff, LP ;
Schenkel, A ;
Venkataramani, SC .
NONLINEARITY, 1999, 12 (04) :1071-1098
[8]   On multiscale approaches to three-dimensional modelling of morphogenesis [J].
Chaturvedi, R ;
Huang, C ;
Kazmierczak, B ;
Schneider, T ;
Izaguirre, JA ;
Glimm, T ;
Hentschel, HGE ;
Glazier, JA ;
Newman, SA ;
Alber, MS .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (03) :237-253
[9]  
Cormack D. H., 1987, HAMS HISTOLOGY
[10]   Spatio-temporal self-organization of bone mineral metabolism and trabecular structure of primary bone [J].
Courtin, B ;
PeraultStaub, AM ;
Staub, JF .
ACTA BIOTHEORETICA, 1995, 43 (04) :373-386