Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation

被引:35
作者
El Dika, Khaled [1 ]
Molinet, Luc [1 ]
机构
[1] Univ Paris 13, Inst Galilee, LAGA, F-93430 Villetaneuse, France
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2007年 / 365卷 / 1858期
关键词
orbital stability; solitary waves; Camassa-Holm equation;
D O I
10.1098/rsta.2007.2011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For the Camassa-Holm equation with kappa >= 0, we first prove that any global solution that is H-1-localized and moves fast enough to the right decays exponentially in space uniformly with respect to time. We also prove that for K > 0, a train of N solitary waves, which are sufficiently decoupled, is orbitally stable in H-1(R).
引用
收藏
页码:2313 / 2331
页数:19
相关论文
共 39 条
[31]   Orbital stability of the sum of N peakons for the generalized higher-order Camassa-Holm equation [J].
Deng, Tongjie ;
Chen, Aiyong .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04)
[32]   On the Camassa-Holm equation and a direct method of solution.: III.: N-soliton solutions [J].
Parker, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2064) :3893-3911
[33]   Orbital stability of smooth solitons in H1 ∧ W1,4 for the modified Camassa-Holm equation [J].
Zhang, Qian ;
Zhu, Guangming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 :1390-1404
[34]   Traveling Wave Solutions to Riesz Time-Fractional Camassa-Holm Equation in Modeling for Shallow-Water Waves [J].
Ray, S. Saha ;
Sahoo, S. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (06)
[35]   Instability of H1-stable periodic peakons for the higher-order μ-Camassa-Holm equation [J].
Chong, Gezi ;
Fu, Ying ;
Wang, Hao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[36]   A convergent finite difference scheme for the Camassa-Holm equation with general H1 initial data [J].
Coclite, G. M. ;
Karlsen, K. H. ;
Risebro, N. H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1554-1579
[37]   Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves [J].
Yu, C. H. ;
Sheu, Tony W. H. ;
Chang, C. H. ;
Liao, S. J. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (05) :1645-1664
[38]   Conservation laws, soliton solutions for modified Camassa-Holm equation and (2+1)-dimensional ZK-BBM equation [J].
Elboree, Mohammed K. .
NONLINEAR DYNAMICS, 2017, 89 (04) :2979-2994