Quadratic stabilization of sampled-data systems with quantization

被引:119
作者
Ishii, H
Francis, BA
机构
[1] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
communication networks; limited data rates; quantization; sampled-data systems; stabilization;
D O I
10.1016/S0005-1098(03)00179-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A design method of memoryless quantizers in sampled-data systems is proposed. The design objective is quadratic stability in the continuous-time domain, and thus the decay rate between sampling times is guaranteed. Our general treatment enables us to look for quantizers efficient in terms of data rate. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1793 / 1800
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 2000, THESIS MASSACHUSETTS
[2]   Quantized feedback stabilization of linear systems [J].
Brockett, RW ;
Liberzon, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (07) :1279-1289
[3]   Stabilization of linear systems with limited information [J].
Elia, N ;
Mitter, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (09) :1384-1400
[4]  
Hespanha J., 2002, P 15 INT S MATH THEO
[5]   Some qualitative properties of sampled-data control systems [J].
Hou, L ;
Michel, AN ;
Ye, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (12) :1721-1725
[6]   Stabilizing a linear system by switching control with dwell time [J].
Ishii, H ;
Francis, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (12) :1962-1973
[7]  
Ishii H., 2002, Lecture notes in control and information sciences, Limited data rate in control systems with networks, V275
[8]   On stabilization of linear systems with limited information [J].
Liberzon, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) :304-307
[9]   Exponential stabilisability of finite-dimensional linear systems with limited data rates [J].
Nair, GN ;
Evans, RJ .
AUTOMATICA, 2003, 39 (04) :585-593
[10]   Stabilization with data-rate-limited feedback: tightest attainable bounds [J].
Nair, GN ;
Evans, RJ .
SYSTEMS & CONTROL LETTERS, 2000, 41 (01) :49-56