Filters and ideals in the generalization of pseudo-BL algebras

被引:6
作者
Chen, Wenjuan [1 ]
Wang, Hongkai [1 ]
机构
[1] Univ Jinan, Sch Math Sci, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Filters; Ideals; Pseudo-BL algebras; Quasi-pseudo-BL algebras; Quasi-pseudo-MV algebras;
D O I
10.1007/s00500-019-04528-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the notion of quasi-pseudo-BL algebras as the generalization of pseudo-BL algebras and quasi-pseudo-MV algebras. First, we investigate the properties of quasi-pseudo-BL algebras and show the subdirect product composition of any quasi-pseudo-BL algebra. Especially, some properties of good quasi-pseudo-BL algebras are presented. Second, we discuss the filters of quasi-pseudo-BL algebras and prove that there exists a bijective correspondence between normal filters and filter congruences on a quasi-pseudo-BL algebra. The properties of some special filters are also discussed. Finally, we study the ideals of quasi-pseudo-BL algebras and investigate some connections between ideals and filters of a quasi-pseudo-BL algebra.
引用
收藏
页码:795 / 812
页数:18
相关论文
共 18 条
[1]  
[Anonymous], 1998, Metamathematics of First-Order Arithmetic
[2]  
Burris S., 1981, COURSE UNIVERSAL ALG, V78
[3]  
Chajda I., 1992, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., V31, P6
[4]  
Chang C.C., 1959, Transactions of the American Mathematical Society, V93, P74, DOI [10.2307/1993423 (cit. on p. 146, DOI 10.2307/1993423(CIT.ONP.146]
[5]   Ideals and congruences in quasi-pseudo-MV algebras [J].
Chen, Wenjuan ;
Dudek, Wieslaw A. .
SOFT COMPUTING, 2018, 22 (12) :3879-3889
[6]  
Chen WJ, 2017, J MULT-VALUED LOG S, V29, P105
[7]   Some classes of quasi-pseudo-MV algebras [J].
Chen, Wenjuan ;
Davvaz, Bijan .
LOGIC JOURNAL OF THE IGPL, 2016, 24 (05) :655-672
[8]   QUANTUM COMPUTATIONAL ALGEBRA WITH A NON-COMMUTATIVE GENERALIZATION [J].
Chen, Wenjuan ;
Dudek, Wieslaw A. .
MATHEMATICA SLOVACA, 2016, 66 (01) :19-34
[9]  
Di Nola A., 2002, MultipleValued Logic, V8, P717
[10]   Some classes of pseudo-BL algebras [J].
Georgescu, G ;
Leustean, L .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 73 :127-153