First passage times on zero and one and natural exponential families

被引:0
作者
Kokonendji, CC [1 ]
机构
[1] Univ Pau & Pays Adour, CNRS, ERS 2055,IUT STID, Lab Math Appl, F-64000 Pau, France
关键词
first passage time; inversion; Levy process; natural exponential family; variance function;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we link the first passage times on zero and one for certain Levy processes on R and for right continuous random walks on Z. We use it to get a probabilistic interpretation of the notion of inversion between natural exponential families. The application to cubic variance functions is given. (C) 2001 Elsevier Science B.V. All rights reserved MSC: 60E07; 62B15.
引用
收藏
页码:293 / 298
页数:6
相关论文
共 11 条
[1]  
BERTOIN J., 1998, Levy Processes
[2]  
DIEUDONNE J, 1971, INFINITESIMAL CALCUL
[3]  
Jorgensen B., 1997, THEORY DISPERSION MO
[4]   THE LINDSAY TRANSFORM OF NATURAL EXPONENTIAL-FAMILIES [J].
KOKONENDJI, CC ;
SESHADRI, V .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (02) :259-272
[5]  
LETAC G, 1986, CR ACAD SCI I-MATH, V303, P61
[6]   NATURAL REAL EXPONENTIAL-FAMILIES WITH CUBIC VARIANCE FUNCTIONS [J].
LETAC, G ;
MORA, M .
ANNALS OF STATISTICS, 1990, 18 (01) :1-37
[7]  
Letac Gerard., 1992, Lectures on Natural Exponential Families and their Variance Functions
[8]   NATURAL EXPONENTIAL-FAMILIES WITH QUADRATIC VARIANCE FUNCTIONS [J].
MORRIS, CN .
ANNALS OF STATISTICS, 1982, 10 (01) :65-80
[9]   LADDER VARIABLES FOR A CONTINUOUS TIME STOCHASTIC PROCESS [J].
PRABHU, NU .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (02) :157-&
[10]   LEFT-CONTINUOUS RANDOM-WALK AND LAGRANGE EXPANSION [J].
WENDEL, JG .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (05) :494-499