Maximum genus and connectivity

被引:22
作者
Chen, JE
Archdeacon, D
Gross, JL
机构
[1] TEXAS A&M UNIV, DEPT COMP SCI, COLLEGE STN, TX 77843 USA
[2] UNIV VERMONT, DEPT MATH & STAT, BURLINGTON, VT 05405 USA
[3] COLUMBIA UNIV, DEPT COMP SCI, NEW YORK, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(94)00336-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that [beta(G)/3] is the tight lower bound on the maximum genus gamma(M)(G) of 2-edge-connected simplicial graphs, where beta(G) is the cycle rank of the graph G. Also, a systematic method is developed to construct 3-vertex-connected simplicial graphs G satisfying the equality gamma(M)(G) = [beta(G)/3]. These two results combine with previously known results to yield a complete picture of the tight lower bounds on the maximum genus of simplicial graphs.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 15 条
[1]  
BOUCHET A, 1976, ORS C PROBL COMB THE, P57
[2]   KURATOWSKI-TYPE THEOREMS FOR AVERAGE GENUS [J].
CHEN, J ;
GROSS, JL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 57 (01) :100-121
[3]  
CHEN J, IN PRESS DISCRETE MA
[4]   LIMIT POINTS FOR AVERAGE GENUS .1. 3-CONNECTED AND 2-CONNECTED SIMPLICIAL GRAPHS [J].
CHEN, JN ;
GROSS, JL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 55 (01) :83-103
[5]  
Gross J.L., 1987, Topological Graph Theory
[6]   HIERARCHY FOR IMBEDDING-DISTRIBUTION INVARIANTS OF A GRAPH [J].
GROSS, JL ;
FURST, ML .
JOURNAL OF GRAPH THEORY, 1987, 11 (02) :205-220
[7]   ON THE AVERAGE GENUS OF A GRAPH [J].
GROSS, JL ;
KLEIN, EW ;
RIEPER, RG .
GRAPHS AND COMBINATORICS, 1993, 9 (02) :153-162
[8]  
JUNGERMAN M, 1978, T AM MATH SOC, V241, P401
[9]  
KANCHI SP, 1992, UNPUB TIGHT LOWER BO
[10]  
Kundu S., 1974, J COMBINATORIAL TH B, V17, P199