Short term electricity price forecasting using a new hybrid model based on two-layer decomposition technique and ensemble learning

被引:41
|
作者
Zhang, Tingting [1 ]
Tang, Zhenpeng [1 ]
Wu, Junchuan [1 ]
Du, Xiaoxu [1 ]
Chen, Kaijie [1 ]
机构
[1] Fuzhou Univ, Sch Econ & Management, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Electricity price forecasting; VMD; EEMD; Two-layer decomposition; Ensemble learning; NEURAL-NETWORK; DIFFERENTIAL EVOLUTION; WAVELET TRANSFORM; MARKET; OPTIMIZATION; MULTISTEP; MEMORY; ARMA;
D O I
10.1016/j.epsr.2021.107762
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Research on forecasting electricity prices is of great significance to market participants. It is very difficult, however, to forecast the electricity price series because of its nonlinearity and high volatility. Considering that the existing studies directly ignore the important information contained in the residual term (Res.) after variational modal decomposition (VMD), this paper introduces a two-layer decomposition technique based on the combination of VMD technology and ensemble empirical modal decomposition (EEMD), carrying out EEMD decomposition on the residual term after VMD decomposition to improve the overall prediction accuracy of the model. At the same time, in order to address the defects of the existing hybrid model prediction methods-which use equal weights to reconstruct the prediction results-this paper draws on the idea of ensemble learning, combining the extreme learning machine (ELM) optimized by the differential evolution (DE) algorithm, introducing the DE-ELM meta-learner to optimize the reconstruction weights of the prediction components, and constructing a new hybrid model VMD-Res.-EEMD-DE-ELM-DE-ELM to obtain better prediction results. In order to verify the model's prediction performance, this paper uses electricity prices from Australian and Spanish electricity markets for empirical analysis. The results show that the hybrid model proposed in this paper has significant forecasting advantages.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
    Zhang, Fan
    Fleyeh, Hasan
    Bales, Chris
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (02) : 301 - 325
  • [32] Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods
    Yang, Zhang
    Ce, Li
    Lian, Li
    APPLIED ENERGY, 2017, 190 : 291 - 305
  • [33] A new hybrid optimization ensemble learning approach for carbon price forecasting
    Sun, Shaolong
    Jin, Feng
    Li, Hongtao
    Li, Yongwu
    APPLIED MATHEMATICAL MODELLING, 2021, 97 : 182 - 205
  • [34] HIRA Model for Short-Term Electricity Price Forecasting
    Cerjan, Marin
    Petricic, Ana
    Delimar, Marko
    ENERGIES, 2019, 12 (03)
  • [35] Short-Term Electricity Price Forecasting via Hybrid Backtracking Search Algorithm and ANFIS Approach
    Pourdaryaei, Alireza
    Mokhlis, Hazlie
    Illias, Hazlee Azil
    Kaboli, S. Hr Aghay
    Ahmad, Shameem
    IEEE ACCESS, 2019, 7 : 77674 - 77691
  • [36] An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting
    Shen, Yamin
    Ma, Yuxuan
    Deng, Simin
    Huang, Chiou-Jye
    Kuo, Ping-Huan
    SUSTAINABILITY, 2021, 13 (04) : 1 - 21
  • [37] Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting
    Divina, Federico
    Gilson, Aude
    Gomez-Vela, Francisco
    Torres, Miguel Garcia
    Torres, Jose E.
    ENERGIES, 2018, 11 (04)
  • [38] The new hybrid approaches to forecasting short-term electricity load
    Fan, Guo-Feng
    Liu, Yan-Rong
    Wei, Hui-Zhen
    Yu, Meng
    Li, Yin-He
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [39] Multi-step carbon price forecasting based on a new quadratic decomposition ensemble learning approach
    Zhang, Tingting
    Tang, Zhenpeng
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [40] A PSO-Based ANN Model for Short-Term Electricity Price Forecasting
    Singh, Nitin
    Hussain, Saddam
    Tiwari, Shailesh
    AMBIENT COMMUNICATIONS AND COMPUTER SYSTEMS, RACCCS 2017, 2018, 696 : 553 - 563