Application of PHT-splines in bending and vibration analysis of cracked Kirchhoff-Love plates

被引:16
作者
Videla, Javier [1 ,3 ]
Contreras, Felipe [1 ]
Nguyen, Hoang X. [2 ]
Atroshchenko, Elena [1 ,3 ]
机构
[1] Univ Chile, Dept Mech Engn, Santiago 8370448, Chile
[2] Northumbria Univ, Dept Mech & Construct Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[3] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
关键词
Kirchhoff-Love plate theory; Fracture mechanics; Extended isogeometric analysis; Recovery-based error estimates; PHT-splines; Adaptive refinement; EXTENDED FINITE-ELEMENT; SUPERCONVERGENT PATCH RECOVERY; STRESS INTENSITY FACTORS; ISOGEOMETRIC ANALYSIS; 3-DIMENSIONAL CRACK; BOUNDARY-CONDITIONS; LOCAL REFINEMENT; ERROR ESTIMATION; THIN PLATES; LEVEL SETS;
D O I
10.1016/j.cma.2019.112754
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present an eXtended Geometry Independent Field approximaTion (X-GIFT) formulation for cracked Kirchhoff-Love plates. The plate geometry is modeled by Non-Uniform Rational B-Splines (NURBS) while the solution is approximated by Polynomial Splines over Hierarchical T-meshes (PHT-splines) and enriched by the Heaviside function and crack tip asymptotic expansions. The adaptive refinement is driven by a recovery-based error estimator. The formulation is employed for bending and vibration analysis. We compare different strategies for refinement, enrichment and evaluation of fracture parameters. The obtained results are shown to be in a good agreement with the reference solutions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:33
相关论文
共 61 条
  • [1] Anderson R. G., 1968, International Journal of Solids and Structures, V4, P1031, DOI 10.1016/0020-7683(68)90021-8
  • [2] Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes
    Anitescu, Cosmin
    Hossain, Md Naim
    Rabczuk, Timon
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 328 : 638 - 662
  • [3] Non-linear analysis of shells with arbitrary evolving cracks using XFEM
    Areias, PMA
    Belytschko, T
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 62 (03) : 384 - 415
  • [4] Weakening the tight coupling between geometry and simulation in isogeometric analysis: From sub- and super-geometric analysis to Geometry-Independent Field approximaTion (GIFT)
    Atroshchenko, Elena
    Tomar, Satyendra
    Xu, Gang
    Bordas, Stephane P. A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (10) : 1131 - 1159
  • [5] ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) : 736 - 754
  • [6] XFEM fracture analysis of shells: The effect of crack tip enrichments
    Bayesteh, H.
    Mohammadi, S.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (10) : 2793 - 2813
  • [7] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [8] Improved implementation and robustness study of the X-FEM for stress analysis around cracks
    Béchet, E
    Minnebol, H
    Moës, N
    Burgardt, B
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (08) : 1033 - 1056
  • [9] A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM
    Benson, D. J.
    Bazilevs, Y.
    De Luycker, E.
    Hsu, M. -C.
    Scott, M.
    Hughes, T. J. R.
    Belytschko, T.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) : 765 - 785
  • [10] On Discrete-Kirchhoff Plate Finite Elements: Implementation and Discretization Error
    Brank, Bostjan
    Ibrahimbegovic, Adnan
    Bohinc, Uros
    [J]. SHELL AND MEMBRANE THEORIES IN MECHANICS AND BIOLOGY: FROM MACRO- TO NANOSCALE STRUCTURES, 2015, : 109 - 131