Numerical Methods to Compute the Coriolis Matrix and Christoffel Symbols for Rigid-Body Systems

被引:18
作者
Echeandia, Sebastian [1 ]
Wensing, Patrick M. [1 ]
机构
[1] Univ Notre Dame, Aerosp & Mech Engn, Notre Dame, IN 46556 USA
来源
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS | 2021年 / 16卷 / 09期
基金
美国国家科学基金会;
关键词
LIE-GROUP FORMULATION; DYNAMICS;
D O I
10.1115/1.4051169
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article presents methods to efficiently compute the Coriolis matrix and underlying Christoffel symbols (of the first kind) for tree-structure rigid-body systems. The algorithms can be executed purely numerically, without requiring partial derivatives as in unscalable symbolic techniques. The computations share a recursive structure in common with classical methods such as the composite-rigid-body algorithm and are of the lowest possible order: O(Nd) for the Coriolis matrix and O(Nd-2) for the Christoffel symbols, where N is the number of bodies and d is the depth of the kinematic tree. Implementation in C/C++ shows computation times of the order of 10-20 mu s for the Coriolis matrix and 40-120 mu s for the Christoffel symbols on systems with 20-degrees-of-freedom (DoF). The results demonstrate feasibility for the adoption of these algorithms within high-rate (>1 kHz) loops for model-based control applications.
引用
收藏
页数:9
相关论文
共 34 条
  • [21] Niemeyer G.D., 1990, THESIS MIT CAMBRIDGE
  • [22] A LIE GROUP FORMULATION OF ROBOT DYNAMICS
    PARK, FC
    BOBROW, JE
    PLOEN, SR
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1995, 14 (06) : 609 - 618
  • [23] Convex optimization algorithms for active balancing of humanoid robots
    Park, Juyong
    Haan, Jaeyoung
    Park, F. C.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (04) : 817 - 822
  • [24] Ploen S. R., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P3770, DOI 10.1109/ACC.1999.786211
  • [25] Robot dynamics: A recursive algorithm for efficient calculation of Christoffel symbols
    Safeea, Mohammad
    Neto, Pedro
    Bearee, Richard
    [J]. MECHANISM AND MACHINE THEORY, 2019, 142
  • [26] Siciliano B, 2009, ADV TXB CONTR SIG PR, P1
  • [27] ON THE ADAPTIVE-CONTROL OF ROBOT MANIPULATORS
    SLOTINE, JJE
    LI, WP
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1987, 6 (03) : 49 - 59
  • [28] A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains
    Sohl, GA
    Bobrow, JE
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2001, 123 (03): : 391 - 399
  • [29] SULEIMAN W, 2008, INT C INF COMM TECHN, P1
  • [30] Traversaro S., 2019, 2019100 TU