A Cell-Based Smoothed Finite Element Method for Arbitrary Polygonal Element to Solve Incompressible Laminar Flow

被引:14
作者
Liu, Mingyang [1 ,2 ,3 ]
Gao, Guangjun [1 ,2 ,3 ]
Zhu, Huifen [1 ,2 ,3 ]
Jiang, Chen [1 ,2 ,3 ]
Liu, Guirong [4 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, Minist Educ, Changsha 410075, Peoples R China
[2] Cent South Univ, Joint Int Res Lab Key Technol Rail Traff Safety, Changsha 410075, Peoples R China
[3] Natl & Local Joint Engn Res Ctr Safety Technol Ra, Changsha 410075, Peoples R China
[4] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, 2851 Woodside Dr, Cincinnati, OH 45221 USA
基金
中国国家自然科学基金;
关键词
Cell-based smoothed finite element method (CS-FEM); polygonal element; characteristic-based split (CBS); stabilized pressure gradient projection (SPGP); incompressible flow; NAVIER-STOKES EQUATIONS; FRACTIONAL-STEP METHOD; HETEROGENEOUS MEDIA; VIBRATION ANALYSIS; FEM; ALGORITHM; SIMULATION; STEADY; SPLIT;
D O I
10.1142/S0219876221500171
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a cell-based smoothed finite element method using the arbitrary n-sided polygonal element (CS-FEM-Poly) is developed to solve fluid mechanics problems. A stabilization method, characteristic-based split coupled with stabilized pressure gradient projection (CBS/SPGP), is employed to deal with numerical oscillations for CS-FEM-Poly. We validate CS-FEM-Poly and test its numerical behaviors using triangular, quadrilateral and polygonal elements on four typical numerical examples. Numerical results show that the CS-FEM-Poly based on CBS/SPGP produces well-agreed solutions with the exact solutions of benchmarks, and gives desirable convergence rate as compared with FEM. In the backward-facing step flow example, the numerical robustness for concave elements is manifested for CS-FEM-Poly. The proposed CS-FEM-Poly exhibits the remarkable potential for polygonal mesh or glued polygonal elements in the hybrid mesh to solve incompressible flows.
引用
收藏
页数:28
相关论文
共 67 条
[1]  
Balaguer M.A., 2010, INT J NUMER METH ENG, V65
[2]   Accelerating incompressible flow calculations using a quasi-implicit scheme: local and dual time stepping approaches [J].
Bevan, R. L. T. ;
Nithiarasu, P. .
COMPUTATIONAL MECHANICS, 2012, 50 (06) :687-693
[3]  
Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
[4]  
2-A
[5]   Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection [J].
Codina, R ;
Blasco, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) :277-300
[6]   Edge-Based Smoothed Finite Element Method Using Two-Step Taylor Galerkin Algorithm for Lagrangian Dynamic Problems [J].
Cui, Xiangyang ;
Chang, Shu .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2015, 12 (05)
[7]   Mimetic finite difference method for the Stokes problem on polygonal meshes [J].
da Veiga, L. Beirao ;
Gyrya, V. ;
Lipnikov, K. ;
Manzini, G. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) :7215-7232
[8]   An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics [J].
Dai, K. Y. ;
Liu, G. R. ;
Nguyen, T. T. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (11-12) :847-860
[9]   Free and forced vibration analysis using the smoothed finite element method (SFEM) [J].
Dai, K. Y. ;
Liu, G. R. .
JOURNAL OF SOUND AND VIBRATION, 2007, 301 (3-5) :803-820
[10]   FRACTIONAL STEP METHOD FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON UNSTRUCTURED TRIANGULAR MESHES [J].
DESPOTIS, GK ;
TSANGARIS, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (11) :1273-1288