Metal Matrix-Metal Nanoparticle Composites with Tunable Melting Temperature and High Thermal Conductivity for Phase-Change Thermal Storage

被引:87
作者
Liu, Minglu [1 ]
Ma, Yuanyu [2 ]
Wu, Hsinwei [2 ]
Wang, Robert Y. [1 ,2 ]
机构
[1] Arizona State Univ, Dept Mech Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Mat Sci & Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
metal nanocomposites; solution-phase synthesis; tunable melting temperature; high thermal conductivity; phase-change material; size-dependent melting; CHANGE ENERGY-STORAGE; GRAPHITE FOAMS; NANOCOMPOSITES; DECOMPOSITION; PERFORMANCE; MANAGEMENT; TRANSPORT; NANOCRYSTALS; ELECTRONICS;
D O I
10.1021/nn505328j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236252 degrees C by varying nanoparticle diameter from 8.114.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 meltfreeze cycles. The nanocomposites Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 +/- 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
引用
收藏
页码:1341 / 1351
页数:11
相关论文
共 71 条
  • [1] [Anonymous], 1996, BINARY ALLOY PHASE D
  • [2] Ashcroft Neil W., 1976, SOLID STATE PHYS, P33
  • [3] Thermal behaviour of dimethylgold(III) carboxylates
    Bessonov, A. A.
    Morozova, N. B.
    Semyannikov, P. P.
    Trubin, S. V.
    Gelfond, N. V.
    Igumenov, I. K.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 92 (03) : 751 - 755
  • [4] Completely Miscible Polyethylene Nanocomposites
    Bieligmeyer, Matthias
    Taheri, Sara Mehdizadeh
    German, Ian
    Boisson, Christophe
    Probst, Christian
    Milius, Wolfgang
    Altstaedt, Volker
    Breu, Josef
    Schmidt, Hans-Werner
    D'Agosto, Franck
    Foerster, Stephan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (44) : 18157 - 18160
  • [5] SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES
    BUFFAT, P
    BOREL, JP
    [J]. PHYSICAL REVIEW A, 1976, 13 (06) : 2287 - 2298
  • [6] Chen G., 2005, PAPPAL SER MECH ENG
  • [7] Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges
    Chen, Liangjie
    Zou, Ruqiang
    Xia, Wei
    Liu, Zhenpu
    Shang, Yuanyuan
    Zhu, Jinlong
    Wang, Yingxia
    Lin, Jianhua
    Xia, Dingguo
    Cao, Anyuan
    [J]. ACS NANO, 2012, 6 (12) : 10884 - 10892
  • [8] Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells
    Choi, Hyosung
    Lee, Jung-Pil
    Ko, Seo-Jin
    Jung, Jae-Woo
    Park, Hyungmin
    Yoo, Seungmin
    Park, Okji
    Jeong, Jong-Ryul
    Park, Soojin
    Kim, Jin Young
    [J]. NANO LETTERS, 2013, 13 (05) : 2204 - 2208
  • [9] THERMODYNAMIC THEORY OF SIZE DEPENDENCE OF MELTING TEMPERATURE IN METALS
    COUCHMAN, PR
    JESSER, WA
    [J]. NATURE, 1977, 269 (5628) : 481 - 483
  • [10] Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam
    Cui, H. T.
    [J]. APPLIED THERMAL ENGINEERING, 2012, 39 : 26 - 28