Metal Matrix-Metal Nanoparticle Composites with Tunable Melting Temperature and High Thermal Conductivity for Phase-Change Thermal Storage

被引:88
作者
Liu, Minglu [1 ]
Ma, Yuanyu [2 ]
Wu, Hsinwei [2 ]
Wang, Robert Y. [1 ,2 ]
机构
[1] Arizona State Univ, Dept Mech Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Mat Sci & Engn, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
metal nanocomposites; solution-phase synthesis; tunable melting temperature; high thermal conductivity; phase-change material; size-dependent melting; CHANGE ENERGY-STORAGE; GRAPHITE FOAMS; NANOCOMPOSITES; DECOMPOSITION; PERFORMANCE; MANAGEMENT; TRANSPORT; NANOCRYSTALS; ELECTRONICS;
D O I
10.1021/nn505328j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236252 degrees C by varying nanoparticle diameter from 8.114.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 meltfreeze cycles. The nanocomposites Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 +/- 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.
引用
收藏
页码:1341 / 1351
页数:11
相关论文
共 71 条
[1]  
[Anonymous], 1996, BINARY ALLOY PHASE D
[2]  
Ashcroft Neil W., 1976, SOLID STATE PHYS, P33
[3]   Thermal behaviour of dimethylgold(III) carboxylates [J].
Bessonov, A. A. ;
Morozova, N. B. ;
Semyannikov, P. P. ;
Trubin, S. V. ;
Gelfond, N. V. ;
Igumenov, I. K. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 92 (03) :751-755
[4]   Completely Miscible Polyethylene Nanocomposites [J].
Bieligmeyer, Matthias ;
Taheri, Sara Mehdizadeh ;
German, Ian ;
Boisson, Christophe ;
Probst, Christian ;
Milius, Wolfgang ;
Altstaedt, Volker ;
Breu, Josef ;
Schmidt, Hans-Werner ;
D'Agosto, Franck ;
Foerster, Stephan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (44) :18157-18160
[5]   SIZE EFFECT ON MELTING TEMPERATURE OF GOLD PARTICLES [J].
BUFFAT, P ;
BOREL, JP .
PHYSICAL REVIEW A, 1976, 13 (06) :2287-2298
[6]  
Chen G., 2005, PAPPAL SER MECH ENG
[7]   Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges [J].
Chen, Liangjie ;
Zou, Ruqiang ;
Xia, Wei ;
Liu, Zhenpu ;
Shang, Yuanyuan ;
Zhu, Jinlong ;
Wang, Yingxia ;
Lin, Jianhua ;
Xia, Dingguo ;
Cao, Anyuan .
ACS NANO, 2012, 6 (12) :10884-10892
[8]   Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells [J].
Choi, Hyosung ;
Lee, Jung-Pil ;
Ko, Seo-Jin ;
Jung, Jae-Woo ;
Park, Hyungmin ;
Yoo, Seungmin ;
Park, Okji ;
Jeong, Jong-Ryul ;
Park, Soojin ;
Kim, Jin Young .
NANO LETTERS, 2013, 13 (05) :2204-2208
[9]   THERMODYNAMIC THEORY OF SIZE DEPENDENCE OF MELTING TEMPERATURE IN METALS [J].
COUCHMAN, PR ;
JESSER, WA .
NATURE, 1977, 269 (5628) :481-483
[10]   Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam [J].
Cui, H. T. .
APPLIED THERMAL ENGINEERING, 2012, 39 :26-28