Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction

被引:229
作者
Wang, Jiangpeng [1 ]
Yu, Yue [1 ]
Cui, Jiayi [1 ]
Li, Xinran [1 ]
Zhang, Yilin [1 ]
Wang, Chao [1 ]
Yu, Xuelian [1 ,2 ]
Ye, Jinhua [2 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
[2] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 301卷
基金
日本学术振兴会;
关键词
VdW heterojunction; CO2; reduction; S-scheme heterojunction; Nitrogen vacancy; Covalent organic frameworks; CARBON NITRIDE; CLIMATE-CHANGE; DRIVEN CO2; METAL; PHOTOCATALYST; G-C3N4; SITES;
D O I
10.1016/j.apcatb.2021.120814
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a novel van der Waals (vdW) heterojunction composite combining g-C3N4 with nitrogen vacancies and Tp-Tta COF manifests effective interface contact area and excellent photocatalytic CO2 reduction performance. First-principles density functional theory calculation and experimental results suggest that the presence of nitrogen vacancies in g-C3N4 can widen the Fermi level gap between C3N4 (NH) and Tp-Tta COF, promoting the recombination of invalid photogenerated carriers through S-scheme pathway. Benefitted from the accelerated transfer of photogenerated charges at the vdW heterostructure interface, the deactivation of oxygen vacancies in C3N4 (NH)/COF is prevented and much higher photocatalytic activity and stability are obtained. The efficient electron transfer and the affinity of Tp-Tta for CO2 are beneficial to the enhanced CO selectivity. This work provides insights for the design of S-scheme heterojunction photocatalyst for CO2 reduction.
引用
收藏
页数:9
相关论文
共 43 条
[21]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[22]   Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution [J].
Qin, Yingying ;
Li, Hong ;
Lu, Jian ;
Feng, Yonghai ;
Meng, Fanying ;
Ma, Changchang ;
Yan, Yongsheng ;
Meng, Minjia .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277
[23]   Metal-Free 2D/2D Phosphorene/g-C3N4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H2 Production [J].
Ran, Jingrun ;
Guo, Weiwei ;
Wang, Hailong ;
Zhu, Bicheng ;
Yu, Jiaguo ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2018, 30 (25)
[24]   Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities [J].
Ran, Jingrun ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2018, 30 (07)
[25]   Polymeric carbon nitride with frustrated Lewis pair sites for enhanced photofixation of nitrogen [J].
Ran, Yue ;
Yu, Xuelian ;
Liu, Jianqiao ;
Cui, Jiayi ;
Wang, Jiangpeng ;
Wang, Lin ;
Zhang, Yihe ;
Xiang, Xu ;
Ye, Jinhua .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (26) :13292-13298
[26]   First-principles simulation: ideas, illustrations and the CASTEP code [J].
Segall, MD ;
Lindan, PJD ;
Probert, MJ ;
Pickard, CJ ;
Hasnip, PJ ;
Clark, SJ ;
Payne, MC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) :2717-2744
[27]   Boosting charge carriers separation and migration efficiency via fabricating all organic van der Waals heterojunction for efficient photoreduction of CO2 [J].
Song, Xianghai ;
Wu, Yuanfeng ;
Zhang, Xinyu ;
Li, Xin ;
Zhu, Zhi ;
Ma, Changchang ;
Yan, Yongsheng ;
Huo, Pengwei ;
Yang, Guoyu .
CHEMICAL ENGINEERING JOURNAL, 2021, 408
[28]   Opportunities of Covalent Organic Frameworks for Advanced Applications [J].
Song, Yanpei ;
Sun, Qi ;
Aguila, Briana ;
Ma, Shengqian .
ADVANCED SCIENCE, 2019, 6 (02)
[29]   Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting [J].
Su, Tongming ;
Shao, Qian ;
Qin, Zuzeng ;
Guo, Zhanhu ;
Wu, Zili .
ACS CATALYSIS, 2018, 8 (03) :2253-2276
[30]   Charging up Stationary Energy Storage [J].
Sutherland, Brandon R. .
JOULE, 2019, 3 (01) :1-3