Valorization of Urban Street Tree Pruning Residues in Biorefineries by Steam Refining: Conversion Into Fibers, Emulsifiers, and Biogas

被引:2
作者
Hagel, Sebastian [1 ]
Luessenhop, Phillipp [2 ]
Walk, Steffen [2 ]
Kirjoranta, Satu [3 ]
Ritter, Annalena [1 ]
Bastidas Jurado, Carla Gabriela [2 ]
Mikkonen, Kirsi S. [3 ,4 ]
Tenkanen, Maija [3 ,4 ]
Koerner, Ina [2 ]
Saake, Bodo [1 ]
机构
[1] Univ Hamburg, Inst Wood Sci, Chem Wood Technol, Hamburg, Germany
[2] Tech Univ Hamburg, Inst Wastewater Management & Water Protect, Bioresource Management Grp, Hamburg, Germany
[3] Univ Helsinki, Dept Food & Nutr, Helsinki, Finland
[4] Univ Helsinki, Helsinki Inst Sustainabil Sci, Helsinki, Finland
关键词
tree pruning material; biorefinery; fibers; emulsions; biogas; steam refining; LIGNOCELLULOSIC BIOMASS; PRETREATMENT; DEGRADATION; ETHANOL; XYLANS; LIGNIN; IMPACT;
D O I
10.3389/fchem.2021.779609
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Street tree pruning residues are a widely available and currently undervalorized bioresource. Their utilization could help alleviate an increasing biomass shortage and offset costs of the pruning process for the municipalities. In this work, a holistic valorization pathway of pruning residues leading to fibers, oligosaccharides, biogas, and compost is presented. For this, representative mixtures of tree pruning materials from the most prevalent street tree genera (oak, linden, maple) found in Hamburg (Germany) were prepared by shredding and cleaning procedures. Collection of sample material was performed in summer and winter to account for seasonality. A steam-based fractionation was conducted using treatment severities ranging from log R-0 = 2.5 to 4.0. At the highest severity, a fiber yield of around 66%, and liquor yield of 26-30% was determined. The fibers were evaluated with respect to their properties for paper product applications, with higher treatment severities leading to higher paper strengths. From the oligosaccharide-rich liquor, emulsions were created, which showed promising stability properties over 8 weeks of storage. The liquors and the rejects from the material preparation also displayed good potential for biomethane production. Overall, the differences between material collected in summer and winter were found to be small, indicating the possibility for a year-round utilization of pruning residues. For the presented utilization pathway, high severity treatments were the most promising, featuring a high liquor yield, good biomethane potential, and the highest paper strengths.
引用
收藏
页数:14
相关论文
共 63 条
[1]  
Adamopoulos S, 2007, GLOBAL NEST J, V9, P20
[2]  
Behorde fur Umwelt und Energie, STRAB HAMB FREIE HAN
[3]  
Bhattarai M., 2020, THESIS
[4]   Time-dependent self-association of spruce galactoglucomannans depends on pH and mechanical shearing [J].
Bhattarai, Mamata ;
Valoppi, Fabio ;
Hirvonen, Sami-Pekka ;
Hietala, Sami ;
Kilpelainen, Petri ;
Aseyev, Vladimir ;
Mikkonen, Kirsi S. .
FOOD HYDROCOLLOIDS, 2020, 102
[5]   HYDROTHERMAL DEGRADATION OF POLYMERS DERIVED FROM PLANTS [J].
BOBLETER, O .
PROGRESS IN POLYMER SCIENCE, 1994, 19 (05) :797-841
[6]  
Boyle W. C., 1977, Microbial Energy Conversion (Schlegel, H.G.
[7]  
Barnea, J. Editors). Proceedings of a Seminar sponsored by the UN Institute for Training and Research (UNITAR) and the Ministry for Research and Technology of the Federal Republic of Germany, Gottingen, 1976., P119
[8]   Optimal Pretreatment of Eucalyptus globulus by Hydrothermolysis and Alkaline Extraction for Microbial Production of Ethanol and Xylitol [J].
Castro, Jean F. ;
Parra, Carolina ;
Yanez-S, Mauricio ;
Rojas, Jonathan ;
Teixeira Mendonca, Regis ;
Baeza, Jaime ;
Freer, Juanita .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (16) :5713-5720
[10]  
Chornet E., 1991, STEAM EXPLOSION TECH, P22