Sample caching Markov chain Monte Carlo approach to boson sampling simulation

被引:6
作者
Liu, Yong [1 ,2 ]
Xiong, Min [1 ,2 ]
Wu, Chunqing [1 ,2 ]
Wang, Dongyang [1 ,2 ]
Liu, Yingwen [1 ,2 ]
Ding, Jiangfang [1 ,2 ]
Huang, Anqi [1 ,2 ]
Fu, Xiang [1 ,2 ]
Qiang, Xiaogang [1 ,2 ,3 ]
Xu, Ping [1 ,2 ]
Deng, Mingtang [1 ,2 ]
Yang, Xuejun [1 ,2 ]
Wu, Junjie [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Inst Quantum Informat, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, State Key Lab High Performance Comp, Changsha 410073, Peoples R China
[3] AMS, Natl Innovat Inst Def Technol, Beijing 100071, Peoples R China
基金
中国国家自然科学基金;
关键词
boson sampling; quantum supremacy; Markov chain Monte Carlo; autocorrelation; sample caching; QUANTUM SUPREMACY;
D O I
10.1088/1367-2630/ab73c4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boson sampling is a promising candidate for quantum supremacy. It requires to sample from a complicated distribution, and is trusted to be intractable on classical computers. Among the various classical sampling methods, the Markov chain Monte Carlo method is an important approach to the simulation and validation of boson sampling. This method however suffers from the severe sample loss issue caused by the autocorrelation of the sample sequence. Addressing this, we propose the sample caching Markov chain Monte Carlo method that eliminates the correlations among the samples, and prevents the sample loss at the meantime, allowing more efficient simulation of boson sampling. Moreover, our method can be used as a general sampling framework that can benefit a wide range of sampling tasks, and is particularly suitable for applications where a large number of samples are taken.
引用
收藏
页数:8
相关论文
共 47 条
[1]  
Aaronson S, 2014, QUANTUM INF COMPUT, V14, P1383
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]   Pattern Recognition Techniques for Boson Sampling Validation [J].
Agresti, Iris ;
Viggianiello, Niko ;
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Crespi, Andrea ;
Osellame, Roberto ;
Wiebe, Nathan ;
Sciarrino, Fabio .
PHYSICAL REVIEW X, 2019, 9 (01)
[4]  
[Anonymous], P 14 S REL DISTR SYS
[5]  
[Anonymous], 1 133 MACROSCOPIC QU
[6]   Using Gaussian Boson Sampling to Find Dense Subgraphs [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[7]   Quantum approximate optimization with Gaussian boson sampling [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. ;
Rebentrost, Patrick .
PHYSICAL REVIEW A, 2018, 98 (01)
[8]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[9]   Estimation of small failure probabilities in high dimensions by subset simulation [J].
Au, SK ;
Beck, JL .
PROBABILISTIC ENGINEERING MECHANICS, 2001, 16 (04) :263-277
[10]   Experimental scattershot boson sampling [J].
Bentivegna, Marco ;
Spagnolo, Nicolo ;
Vitelli, Chiara ;
Flamini, Fulvio ;
Viggianiello, Niko ;
Latmiral, Ludovico ;
Mataloni, Paolo ;
Brod, Daniel J. ;
Galvao, Ernesto F. ;
Crespi, Andrea ;
Ramponi, Roberta ;
Osellame, Roberto ;
Sciarrino, Fabio .
SCIENCE ADVANCES, 2015, 1 (03)