Emergent D6 symmetry in fully relaxed magic-angle twisted bilayer graphene

被引:72
|
作者
Angeli, M. [1 ]
Mandelli, D. [2 ,3 ]
Valli, A. [1 ,4 ]
Amaricci, A. [1 ]
Capone, M. [1 ,4 ]
Tosatti, E. [1 ,4 ,5 ]
Fabrizio, M. [1 ]
机构
[1] Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Chem, Dept Phys Chem, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-6997801 Tel Aviv, Israel
[4] CNR, Ist Officina Mat, CNR IOM Democritos, Rome, Italy
[5] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
奥地利科学基金会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
MOIRE;
D O I
10.1103/PhysRevB.98.235137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a tight-binding calculation of a twisted bilayer graphene at magic angle theta similar to 1.08 degrees, allowing for full, in- and out-of-plane, relaxation of the atomic positions. The resulting band structure displays, as usual, four narrow minibands around the neutrality point, well separated from all other bands after the lattice relaxation. A thorough analysis of the miniband Bloch functions reveals an emergent D-6 symmetry, despite the lack of any manifest point-group symmetry in the relaxed lattice. The Bloch functions at the Gamma point are degenerate in pairs, reflecting the so-called valley degeneracy. Moreover, each of them is invariant under C-3(z), i.e., transforming like a one-dimensional, in-plane symmetric irreducible representation of an "emergent" D-6 group. Out of plane, the lower doublet is even under C-2x, while the upper doublet is odd, which implies that at least eight Wannier orbitals, two s-like and two p(z)-like ones for each of the supercell sublattices AB and BA, are necessary but probably not sufficient to describe the four minibands. This unexpected one-electron complexity is likely to play an important role in the still unexplained metal-insulator-superconductor phenomenology of this system.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Magnetism of magic-angle twisted bilayer graphene
    Vahedi, Javad
    Peters, Robert
    Missaoui, Ahmed
    Honecker, Andreas
    de Laissardiere, Guy Trambly
    SCIPOST PHYSICS, 2021, 11 (04):
  • [2] Magnetoplasmons in magic-angle twisted bilayer graphene
    Do, Thi-Nga
    Shih, Po-Hsin
    Gumbs, Godfrey
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (45)
  • [3] Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene
    Yuhang Jiang
    Xinyuan Lai
    Kenji Watanabe
    Takashi Taniguchi
    Kristjan Haule
    Jinhai Mao
    Eva Y. Andrei
    Nature, 2019, 573 : 91 - 95
  • [4] Corrugation-driven symmetry breaking in magic-angle twisted bilayer graphene
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [5] Corrugation-driven symmetry breaking in magic-angle twisted bilayer graphene
    Tawfiqur Rakib
    Pascal Pochet
    Elif Ertekin
    Harley T. Johnson
    Communications Physics, 5
  • [6] Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene
    Jiang, Yuhang
    Lai, Xinyuan
    Watanabe, Kenji
    Taniguchi, Takashi
    Haule, Kristjan
    Mao, Jinhai
    Andrei, Eva Y.
    NATURE, 2019, 573 (7772) : 91 - +
  • [7] Superfluid stiffness of magic-angle twisted bilayer graphene
    Tanaka, Miuko
    Wang, Joel i-j.
    Dinh, Thao H.
    Rodan-Legrain, Daniel
    Zaman, Sameia
    Hays, Max
    Almanakly, Aziza
    Kannan, Bharath
    Kim, David K.
    Niedzielski, Bethany M.
    Serniak, Kyle
    Schwartz, Mollie E.
    Watanabe, Kenji
    Taniguchi, Takashi
    Orlando, Terry P.
    Gustavsson, Simon
    Grover, Jeffrey A.
    Jarillo-Herrero, Pablo
    Oliver, William D.
    NATURE, 2025, 638 (8049) : 99 - 105
  • [8] Moire Phonons in Magic-Angle Twisted Bilayer Graphene
    Liu, Xiaoqian
    Peng, Ran
    Sun, Zhaoru
    Liu, Jianpeng
    NANO LETTERS, 2022, 22 (19) : 7791 - 7797
  • [9] Exact Diagonalization for Magic-Angle Twisted Bilayer Graphene
    Potasz, Pawel
    Xie, Ming
    MacDonald, A. H.
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [10] Kondo Lattice Model in Magic-Angle Twisted Bilayer Graphene
    Chou, Yang-Zhi
    Das Sarma, Sankar
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)