Boundary-value problems for systems of Hamilton-Jacobi-Bellman inclusions with constraints

被引:0
作者
Aubin, JP [1 ]
机构
[1] Res Rech Viabilite, F-75005 Paris, France
来源
EVOLUTION EQUATIONS: APPLICATIONS TO PHYSICS, INDUSTRY, LIFE SCIENCES AND ECONOMICS | 2003年 / 55卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:25 / 60
页数:36
相关论文
共 67 条
[1]  
[Anonymous], OPTIMAL CONTROL VISC
[2]  
Aubin J.-P., 2000, MATH POPUL STUD, V91, P1
[3]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[4]  
Aubin J.-P., 2001, LNCS, V2034, P119
[5]  
Aubin J-P., 1999, MUTATIONAL MORPHOLOG, DOI 10.1007/978-1-4612-1576-9
[6]   Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions [J].
Aubin, Jean-Pierre ;
Frankowska, Halina .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (02) :149-168
[7]   CONTINGENT SOLUTIONS TO THE CENTER MANIFOLD EQUATION [J].
AUBIN, JP ;
DAPRATO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01) :13-28
[8]  
AUBIN JP, 1990, CR ACAD SCI I-MATH, V311, P851
[9]  
AUBIN JP, 1990, CR ACAD SCI I-MATH, V311, P295
[10]  
AUBIN JP, 1991, CR ACAD SCI I-MATH, V312, P271