Nonlinear Frequency Response Analysis (NFRA) of Lithium-Ion Batteries

被引:53
|
作者
Harting, Nina [1 ,2 ]
Wolff, Nicolas [1 ,2 ]
Roeder, Fridolin [1 ,2 ]
Krewer, Ulrike [1 ,2 ]
机构
[1] TU Braunschweig, Inst Energy & Proc Syst Engn, Franz Liszt Str 35, D-38106 Braunschweig, Germany
[2] BLB, Langer Kamp 19, D-38106 Braunschweig, Germany
关键词
Impedance Spectroscopy; Nonlinear Frequency Response Analysis; Harmonic Analysis; Lithium-ion Battery; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; HARMONIC-ANALYSIS; SOLID-ELECTROLYTE; AGING MECHANISMS; FUEL-CELLS; PERFORMANCE; CORROSION; BEHAVIOR; SYSTEMS; EIS;
D O I
10.1016/j.electacta.2017.04.037
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is the most commonly used technique for dynamic analysis of Lithium-ion batteries. EIS, however, limits analysis to linear contributions of the processes. For Lithium-ion batteries with their nonlinear electrochemistry and physics, dynamics are only analysed with regard to linear system behaviour and therefore some dynamic information is not used. Nonlinear Frequency Response Analysis (NFRA) extends dynamic analysis to consider also nonlinearities. Higher excitation amplitudes are applied and higher order frequency responses Yn are measured. The spectra show distinct higher harmonic responses with strong characteristic nonlinear behaviour. We investigate amplitude and temperature dependency of higher harmonic responses as well as the impact of ageing of Lithium-ion batteries with NFRA. By correlating NFRA and EIS, solid diffusion, reaction and ionic transport contributions at and in the SEI can be separated and identified. Thereby the method of NFRA is seen as an important additional dynamic analysis method for Lithium-ion batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 50 条
  • [41] Lithium-ion batteries for aerospace
    Smart, MC
    Ratnakumar, BV
    Whitcanack, LD
    Chin, KB
    Surampudi, S
    Gitzendanner, R
    Puglia, F
    Byers, J
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) : 18 - 25
  • [42] Beyond Lithium-Ion Batteries
    Zhang, Chaofeng
    Chou, Shulei
    Guo, Zaiping
    Dou, Shi-Xue
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
  • [43] Recycling of lithium-ion batteries
    不详
    PRZEMYSL CHEMICZNY, 2021, 100 (10): : 916 - 916
  • [44] The impedance of lithium-ion batteries
    Kulova, T. L.
    Tarnopol'skii, V. A.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (01) : 38 - 44
  • [45] Origami lithium-ion batteries
    Song, Zeming
    Ma, Teng
    Tang, Rui
    Cheng, Qian
    Wang, Xu
    Krishnaraju, Deepakshyam
    Panat, Rahul
    Chan, Candace K.
    Yu, Hongyu
    Jiang, Hanqing
    NATURE COMMUNICATIONS, 2014, 5
  • [46] The Dawn of Lithium-Ion Batteries
    Nishi, Yoshio
    ELECTROCHEMICAL SOCIETY INTERFACE, 2016, 25 (03): : 70 - 73
  • [47] Prismatic lithium-ion batteries
    Ehrlich, GM
    Hellen, RM
    Orndorh, CM
    Dougherty, TA
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 1997, 12 (09) : 7 - 11
  • [48] A retrospective on lithium-ion batteries
    Jing Xie
    Yi-Chun Lu
    Nature Communications, 11
  • [49] LITHIUM-ION RECHARGEABLE BATTERIES
    MEGAHED, S
    SCROSATI, B
    JOURNAL OF POWER SOURCES, 1994, 51 (1-2) : 79 - 104
  • [50] Lithium-Ion and LithiumSulfur Batteries
    Kularatna, Nihal
    IEEE ELECTRICAL INSULATION MAGAZINE, 2023, 39 (04) : 59 - 59