Nonlinear Frequency Response Analysis (NFRA) of Lithium-Ion Batteries

被引:53
作者
Harting, Nina [1 ,2 ]
Wolff, Nicolas [1 ,2 ]
Roeder, Fridolin [1 ,2 ]
Krewer, Ulrike [1 ,2 ]
机构
[1] TU Braunschweig, Inst Energy & Proc Syst Engn, Franz Liszt Str 35, D-38106 Braunschweig, Germany
[2] BLB, Langer Kamp 19, D-38106 Braunschweig, Germany
关键词
Impedance Spectroscopy; Nonlinear Frequency Response Analysis; Harmonic Analysis; Lithium-ion Battery; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; HARMONIC-ANALYSIS; SOLID-ELECTROLYTE; AGING MECHANISMS; FUEL-CELLS; PERFORMANCE; CORROSION; BEHAVIOR; SYSTEMS; EIS;
D O I
10.1016/j.electacta.2017.04.037
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is the most commonly used technique for dynamic analysis of Lithium-ion batteries. EIS, however, limits analysis to linear contributions of the processes. For Lithium-ion batteries with their nonlinear electrochemistry and physics, dynamics are only analysed with regard to linear system behaviour and therefore some dynamic information is not used. Nonlinear Frequency Response Analysis (NFRA) extends dynamic analysis to consider also nonlinearities. Higher excitation amplitudes are applied and higher order frequency responses Yn are measured. The spectra show distinct higher harmonic responses with strong characteristic nonlinear behaviour. We investigate amplitude and temperature dependency of higher harmonic responses as well as the impact of ageing of Lithium-ion batteries with NFRA. By correlating NFRA and EIS, solid diffusion, reaction and ionic transport contributions at and in the SEI can be separated and identified. Thereby the method of NFRA is seen as an important additional dynamic analysis method for Lithium-ion batteries. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 50 条
  • [21] Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries
    Qiu, Yitao
    Zhang, Xiaoxuan
    Usubelli, Camille
    Mayer, Daniel
    Linder, Christian
    Christensen, Jake
    JOURNAL OF POWER SOURCES, 2022, 541
  • [22] Transforming Materials into Practical Automotive Lithium-Ion Batteries
    Hou, Junbo
    Yang, Min
    Zhou, Liwei
    Yan, Xiaohui
    Ke, Changchun
    Zhang, Junliang
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (08)
  • [23] The Influence of Current Ripples on the Lifetime of Lithium-Ion Batteries
    Brand, Martin Johannes
    Hofmann, Markus Hans
    Schuster, Simon S.
    Keil, Peter
    Jossen, Andreas
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (11) : 10438 - 10445
  • [24] Towards robotizing the processes of testing lithium-ion batteries
    Rastegarpanah, Alireza
    Ahmeid, Mohamed
    Marturi, Naresh
    Attidekou, Pierrot S.
    Musbahu, Muhammad
    Ner, Rohit
    Lambert, Simon
    Stolkin, Rustam
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2021, 235 (08) : 1309 - 1325
  • [25] Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries
    Li, Dezhi
    Yang, Dongfang
    Li, Liwei
    Wang, Licheng
    Wang, Kai
    ENERGIES, 2022, 15 (18)
  • [26] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [27] Degradation analysis of lithium-ion batteries under ultrahigh-rate discharge profile
    Wang, Ruixi
    Zhou, Xing
    Wang, Yu
    Xiao, Yukang
    Shi, Zhichao
    Liu, Yajie
    Zhang, Tao
    APPLIED ENERGY, 2024, 376
  • [28] Correlating lithium plating quantification with thermal safety characteristics of lithium-ion batteries
    Zhou, Hanwei
    Fear, Conner
    Carter, Rachel E.
    Love, Corey T.
    Mukherjee, Partha P.
    ENERGY STORAGE MATERIALS, 2024, 66
  • [29] Life Cycle Assessment of Lithium-ion Batteries: A Critical Review
    Arshad, Faiza
    Lin, Jiao
    Manurkar, Nagesh
    Fan, Ersha
    Ahmad, Ali
    Tariq, Maher-un-Nisa
    Wu, Feng
    Chen, Renjie
    Li, Li
    RESOURCES CONSERVATION AND RECYCLING, 2022, 180
  • [30] Corrosion of aluminium current collector in lithium-ion batteries: A review
    Gabryelczyk, Agnieszka
    Ivanov, Svetlozar
    Bund, Andreas
    Lota, Grzegorz
    JOURNAL OF ENERGY STORAGE, 2021, 43