A Product Formula Approach to a Nonhomogeneous Boundary Optimal Control Problem Governed by Nonlinear Phase-field Transition System Part II: Lie-Trotter Product Formula

被引:7
作者
Benincasa, Tommaso [1 ]
Favini, Angelo [1 ]
Morosanu, Costica [2 ]
机构
[1] Univ Bologna, I-40126 Bologna, Italy
[2] Alexandru Ioan Cuza Univ, Iasi 700506, Romania
关键词
Boundary value problems; Nonlinear parabolic systems; Fractional steps method; Phase-field models;
D O I
10.1007/s10957-010-9743-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we prove the convergence of an iterative scheme of fractional steps type for a non-homogeneous Cauchy-Neumann boundary optimal control problem governed by non-linear phase-field system, when the boundary control is dependent both on time and spatial variables. Moreover, necessary optimality conditions are established for the approximating process. The advantage of such approach leads to a numerical algorithm in order to approximate the original optimal control problem.
引用
收藏
页码:31 / 45
页数:15
相关论文
共 7 条
[1]   Fractional Steps Scheme to Approximate the Phase-Field Transition System with Non-Homogeneous Cauchy-Neumann Boundary Conditions [J].
Benincasa, T. ;
Morosanu, C. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (3-4) :199-213
[2]  
Benincasa T, 2011, J OPTIMIZ THEORY APP, V148, P14, DOI 10.1007/s10957-010-9742-x
[3]  
Heinkenschloss M, 1999, CONTROL CYBERN, V28, P177
[4]   OPTIMAL-CONTROL OF A PHASE FIELD MODEL FOR SOLIDIFICATION [J].
HOFFMAN, KH ;
JIANG, LS .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1992, 13 (1-2) :11-27
[5]  
Moroanu C., 2000, Int. J. Differ. Equ. Appl, V1, P187
[6]   State-constrained optimal control for the phase-field transition system [J].
Morosanu, C. ;
Wang, G. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (3-4) :379-403
[7]  
Morosanu C, 2003, CONTROL CYBERN, V32, P5