Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices

被引:15
作者
Manda, B. Many [1 ]
Senyange, B. [1 ]
Skokos, Ch [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
ANDERSON LOCALIZATION; COMPUTATIONAL-EFFICIENCY; SYMPLECTIC INTEGRATION; NUMERICAL-INTEGRATION; DIFFUSION; TRANSPORT; ABSENCE;
D O I
10.1103/PhysRevE.101.032206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We reveal the generic characteristics of wave-packet delocalization in two-dimensional nonlinear disordered lattices by performing extensive numerical simulations in two basic disordered models: the Klein-Gordon system and the discrete nonlinear Schrodinger equation. We find that in both models (a) the wave packet's second moment asymptotically evolves as t(am) with a(m) approximate to 1/5 (1/3) for the weak (strong) chaos dynamical regime, in agreement with previous theoretical predictions [S. Flach, Chem. Phys. 375, 548 (2010)]; (b) chaos persists, but its strength decreases in time t since the finite-time maximum Lyapunov exponent Lambda decays as Lambda proportional to t(proportional to Lambda), with alpha(Lambda) approximate to -0.37 (-0.46) for the weak (strong) chaos case; and (c) the deviation vector distributions show the wandering of localized chaotic seeds in the lattice's excited part, which induces the wave packet's thermalization. We also propose a dimension-independent scaling between the wave packet's spreading and chaoticity, which allows the prediction of the obtained alpha(Lambda) values.
引用
收藏
页数:6
相关论文
共 46 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]   KAM TORI AND ABSENCE OF DIFFUSION OF A WAVE-PACKET IN THE 1D RANDOM DNLS MODEL [J].
Aubry, S. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08) :2125-2145
[3]   Local nature and scaling of chaos in weakly nonlinear disordered chains [J].
Basko, D. M. .
PHYSICAL REVIEW E, 2012, 86 (03)
[4]   Weak chaos in the disordered nonlinear Schrodinger chain: Destruction of Anderson localization by Arnold diffusion [J].
Basko, D. M. .
ANNALS OF PHYSICS, 2011, 326 (07) :1577-1655
[5]  
Benettin Giancarlo, 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[6]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[7]   New families of symplectic splitting methods for numerical integration in dynamical astronomy [J].
Blanes, S. ;
Casas, F. ;
Farres, A. ;
Laskar, J. ;
Makazaga, J. ;
Murua, A. .
APPLIED NUMERICAL MATHEMATICS, 2013, 68 :58-72
[8]   Nonlinear waves in disordered chains: Probing the limits of chaos and spreading [J].
Bodyfelt, J. D. ;
Laptyeva, T. V. ;
Skokos, Ch. ;
Krimer, D. O. ;
Flach, S. .
PHYSICAL REVIEW E, 2011, 84 (01)
[9]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[10]   Computational efficiency of numerical integration methods for the tangent dynamics of many-body Hamiltonian systems in one and two spatial dimensions [J].
Danieli, Carlo ;
Manda, Bertin Many ;
Mithun, Thudiyangal ;
Skokos, Charalampos .
MATHEMATICS IN ENGINEERING, 2019, 1 (03) :447-488