On certain sums of number theory

被引:14
作者
Bordelles, Olivier [1 ]
机构
[1] 2 Allee Combe, F-43000 Aiguilhe, France
关键词
Dirichlet hyperbola principle; exponential sums of type I and II; Vaughan's identity; exponent pairs;
D O I
10.1142/S1793042122501056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sums of the shape Sigma(n <= x) f(<sic>x/n<sic>) where f is either the von Mangoldt function or the Dirichlet-Piltz divisor functions. We improve previous estimates when f = Lambda and f = tau, and provide new results when f = tau(r) with r >= 3, breaking the 1/2-barrier in each case. The functions f = mu(2), f = 2(omega) and f = omega are also investigated.
引用
收藏
页码:2053 / 2074
页数:22
相关论文
共 15 条
[1]   Sums of two relatively prime cubes [J].
Baker, R. C. .
ACTA ARITHMETICA, 2007, 129 (02) :103-146
[2]   On a sum involving the Euler function [J].
Bordelles, Olivier ;
Dai, Lixia ;
Heyman, Randell ;
Pan, Hao ;
Shparlinski, Igor E. .
JOURNAL OF NUMBER THEORY, 2019, 202 :278-297
[3]   On a sum involving the number of distinct prime factors function related to the integer part function [J].
Bouderbala, Mihoub ;
Karras, Meselem .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) :52-56
[4]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[5]  
Bourgain J., 2017, Mean square of zeta function, circle problem and divisor problem revisited
[6]  
Davenport H., 2000, GRADUATE TEXTS MATH, V3rd
[7]   Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients [J].
Granville, A ;
Ramare, O .
MATHEMATIKA, 1996, 43 (85) :73-107
[8]  
Heath-Brown D.R, 2017, PROC MAT I STEKLOVA, V296, P95
[9]   On a sum involving the divisor function [J].
Ma, Jing ;
Sun, Huayan .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (02) :185-191
[10]   On a sum involving the Mangoldt function [J].
Ma, Jing ;
Wu, Jie .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (01) :39-48