Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

被引:26
作者
Chakraborty, G. [1 ]
Gupta, K. [1 ]
Meikap, A. K. [1 ]
Babu, R. [2 ]
Blau, W. J. [2 ]
机构
[1] Natl Inst Technol, Dept Phys, Durgapur 713209, W Bengal, India
[2] Univ Dublin Trinity Coll, Dept Phys, Dublin 2, Ireland
关键词
AMORPHOUS-SEMICONDUCTORS; OPTICAL-PROPERTIES; AC CONDUCTION; POLYMER; FIBERS; FILMS; MAGNETORESISTANCE; CHALCOGENIDE; POLYANILINE; DISPERSION;
D O I
10.1063/1.3544204
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77 <= T <= 300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field. (C) 2011 American Institute of Physics. [doi:10.1063/1.3544204]
引用
收藏
页数:9
相关论文
共 49 条
[1]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[2]  
Bhadra J, 2010, INDIAN J PURE AP PHY, V48, P425
[3]   Magnetocapacitance without magnetoelectric coupling [J].
Catalan, G .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[4]   Characterization and Electrical Transport Properties of Polyaniline and Multiwall Carbon Nanotube Composites [J].
Chakraborty, G. ;
Guatak, S. ;
Meikap, A. K. ;
Woods, T. ;
Babu, R. ;
Blau, W. J. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2010, 48 (15) :1767-1775
[5]   Carbon nanotubes and nanofibre: An overview [J].
Chatterjee, A ;
Deopura, BL .
FIBERS AND POLYMERS, 2002, 3 (04) :134-139
[6]   A versatile, molecular engineering approach to simultaneously enhanced, multifunctional carbon-nanotube-polymer composites [J].
Chen, J ;
Ramasubramaniam, R ;
Xue, C ;
Liu, H .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (01) :114-119
[7]   Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers [J].
Chen, J ;
Liu, HY ;
Weimer, WA ;
Halls, MD ;
Waldeck, DH ;
Walker, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9034-9035
[8]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[9]   Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J].
Dalton, AB ;
Stephan, C ;
Coleman, JN ;
McCarthy, B ;
Ajayan, PM ;
Lefrant, S ;
Bernier, P ;
Blau, WJ ;
Byrne, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (43) :10012-10016
[10]   Continuous carbon nanotube composite fibers: properties, potential applications, and problems [J].
Dalton, AB ;
Collins, S ;
Razal, J ;
Munoz, E ;
Ebron, VH ;
Kim, BG ;
Coleman, JN ;
Ferraris, JP ;
Baughman, RH .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (01) :1-3