Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors

被引:117
作者
Puzyrev, Y. S. [1 ]
Roy, T. [1 ]
Beck, M. [1 ,2 ]
Tuttle, B. R. [1 ,3 ]
Schrimpf, R. D. [4 ]
Fleetwood, D. M. [1 ,4 ]
Pantelides, S. T. [1 ,4 ,5 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
[3] Penn State Behrend Coll, Dept Phys, Erie, PA 16563 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
1ST-PRINCIPLES CALCULATIONS; NATIVE DEFECTS; HYDROGEN; RELIABILITY;
D O I
10.1063/1.3524185
中图分类号
O59 [应用物理学];
学科分类号
摘要
Degradation mechanisms limiting the electrical reliability of GaN high-electron-mobility transistors (HEMTs) are generally attributed to defect generation by hot-electrons but specific mechanisms for such processes have not been identified. Here we give a model for the generation of active defects by the release of hydrogen atoms that passivate pre-exisiting defects. We report first-principles density-functional calculations of several candidate point defects and their interaction with hydrogen in GaN, under different growth conditions. Candidate precursor point defects in device quality GaN are identified by correlating previously observed trap levels with calculated optical levels. We propose dehydrogenation of point defects as a generic physical mechanism for defect generation in HEMTs under hot-electron stress when the degradation is not spontaneously reversible. Dehydrogenation of point defects explains (1) observed hot electron stress transconductance degradation, (2) increase in yellow luminescence, and opposite threshold voltage shifts in devices where the material was grown under nitrogen-and ammonia-rich conditions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3524185]
引用
收藏
页数:8
相关论文
共 25 条
[1]   Deep level optical and thermal spectroscopy of traps in n-GaN grown by ammonia molecular beam epitaxy [J].
Arehart, A. R. ;
Corrion, A. ;
Poblenz, C. ;
Speck, J. S. ;
Mishra, U. K. ;
Ringel, S. A. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[2]   1ST-PRINCIPLES CALCULATIONS OF DIFFUSION-COEFFICIENTS - HYDROGEN IN SILICON [J].
BLOCHL, PE ;
VAN DE WALLE, CG ;
PANTELIDES, ST .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1401-1404
[3]   Reliability and degradation mechanism of AlGaN/GaN HEMTs for next generation mobile communication systems [J].
Dammann, M. ;
Pletschen, W. ;
Waltereit, P. ;
Bronner, W. ;
Quay, R. ;
Mueller, S. ;
Mikulla, M. ;
Ambacher, O. ;
van der Wel, P. J. ;
Murad, S. ;
Rodle, T. ;
Behtash, R. ;
Bourgeois, F. ;
Riepe, K. ;
Fagerlind, M. ;
Sveinbjornsson, E. O. .
MICROELECTRONICS RELIABILITY, 2009, 49 (05) :474-477
[4]   Defect generation in field-effect transistors under channel-hot-electron stress [J].
DiMaria, DJ .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (12) :8707-8715
[5]   Nitrogen vacancies as major point defects in gallium nitride [J].
Ganchenkova, M. G. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[6]  
Kim H, 2001, PHYS STATUS SOLIDI A, V188, P203, DOI 10.1002/1521-396X(200111)188:1<203::AID-PSSA203>3.0.CO
[7]  
2-C
[8]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[9]   Nanoscale mapping of temperature and defect evolution inside operating AlGaN/GaN high electron mobility transistors [J].
Lin, Chung-Han ;
Merz, T. A. ;
Doutt, D. R. ;
Hetzer, M. J. ;
Joh, Jungwoo ;
del Alamo, Jesus A. ;
Mishra, U. K. ;
Brillson, L. J. .
APPLIED PHYSICS LETTERS, 2009, 95 (03)
[10]   Reliability of GaN high-electron-mobility transistors: State of the art and perspectives [J].
Meneghesso, Gaudenzio ;
Verzellesi, Giovanni ;
Danesin, Francesca ;
Rampazzo, Fabiana ;
Zanon, Franco ;
Tazzoli, Augusto ;
Meneghini, Matteo ;
Zanoni, Enrico .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2008, 8 (02) :332-343