Strong Magnetic Response of Optical Nanofibers

被引:21
作者
Atakaramians, Shaghik [1 ]
Miroshnichenko, Andrey E. [2 ]
Shadrivov, Ilya V. [2 ]
Mirzaei, Ali [2 ]
Monro, Tanya M. [3 ]
Kivshar, Yuri S. [2 ]
Afshar, Shahraam, V [3 ]
机构
[1] Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, GPO Box 4, Canberra, ACT 2601, Australia
[3] Univ S Australia, Sch Engn, Laser Phys & Photon Devices Labs, Mawson Lakes, SA 5095, Australia
来源
ACS PHOTONICS | 2016年 / 3卷 / 06期
基金
澳大利亚研究理事会;
关键词
optical fibers; nanophotonics; optical magnetism; multipole decomposition; coupled dipole-fiber system; SPONTANEOUS-EMISSION; MICROCAVITY; RESONANCE; METAMATERIALS; SCATTERING; FIBER; ATOM;
D O I
10.1021/acsphotonics.6b00030
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce a new platform to achieve a strong magnetic response in optical fibers with nanoscale dimension. We reveal that for a coupled dipole-fiber system an electric dipole placed near an optical nanofiber can produce strong magnetic response. We show that the magnetic and electric response of such a system depends on the orientation of the dipole source with respect to the fiber. Using the multipole expansion method, we demonstrate that it is possible to suppress the electric response and preferentially enhance the magnetic resonance of a coupled dipole-fiber system, in such a way that the energy in the magnetic mode can be made 2 orders of magnitude higher than that of the electric mode of the system. This nanophotonic system opens up new possibilities to develop low-dimensional nanodevices with enhanced magnetic response.
引用
收藏
页码:972 / 978
页数:7
相关论文
共 55 条
  • [1] Self-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems
    Afshar, S.
    Henderson, M. R.
    Greentree, A. D.
    Gibson, B. C.
    Monro, T. M.
    [J]. OPTICS EXPRESS, 2014, 22 (09): : 11301 - 11311
  • [2] [Anonymous], 2009, Classical Electrodynamics
  • [3] Observation of strong coupling between one atom and a monolithic microresonator
    Aoki, Takao
    Dayan, Barak
    Wilcut, E.
    Bowen, W. P.
    Parkins, A. S.
    Kippenberg, T. J.
    Vahala, K. J.
    Kimble, H. J.
    [J]. NATURE, 2006, 443 (7112) : 671 - 674
  • [4] Ultra-high-Q toroid microcavity on a chip
    Armani, DK
    Kippenberg, TJ
    Spillane, SM
    Vahala, KJ
    [J]. NATURE, 2003, 421 (6926) : 925 - 928
  • [5] Berman P.R., 1993, CAVITY QUANTUM ELECT
  • [6] Magnetically tunable Mie resonance-based dielectric metamaterials
    Bi, Ke
    Guo, Yunsheng
    Liu, Xiaoming
    Zhao, Qian
    Xiao, Jinghua
    Lei, Ming
    Zhou, Ji
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [7] MODIFICATION OF SPONTANEOUS EMISSION RATE IN PLANAR DIELECTRIC MICROCAVITY STRUCTURES
    BJORK, G
    MACHIDA, S
    YAMAMOTO, Y
    IGETA, K
    [J]. PHYSICAL REVIEW A, 1991, 44 (01): : 669 - 681
  • [8] Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
  • [9] Tuning the Color of Silicon Nanostructures
    Cao, Linyou
    Fan, Pengyu
    Barnard, Edward S.
    Brown, Ana M.
    Brongersma, Mark L.
    [J]. NANO LETTERS, 2010, 10 (07) : 2649 - 2654
  • [10] SPONTANEOUS EMISSION FROM EXCITONS IN CYLINDRICAL DIELECTRIC WAVE-GUIDES AND THE SPONTANEOUS-EMISSION FACTOR OF MICROCAVITY RING LASERS
    CHU, DY
    HO, ST
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (02) : 381 - 390