ON LITTLEWOOD-PALEY FUNCTIONS ASSOCIATED WITH THE DUNKL OPERATOR

被引:3
作者
Liao, Jianquan [1 ]
Zhang, Xiaoliang [2 ]
Li, Zhongkai [3 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Guangdong, Peoples R China
[2] Capital Normal Univ, Dept Math, Beijing 100048, Peoples R China
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Littlewood-Paley function; Dunkl operator; lambda-Poisson integral; lambda-Hilbert transform; Dunkl transform;
D O I
10.1017/S0004972717000223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Littlewood-Paley operator associated with the reflection part of the Dunkl operator is introduced and proved to be of type (p; p) for 1 < p < infinity, based on boundedness of a generalised vector-valued singular integral. This fills a gap for 2 < p < infinity concerning the boundedness of a g-function in the Dunkl setting. The paper also supplies new proofs for 1 < p < infinity on the (p; p) boundedness of various g-functions associated with the Dunkl operator.
引用
收藏
页码:126 / 138
页数:13
相关论文
共 11 条
[1]  
Amri B., 2012, Ann. Math. Blaise Pascal, V19, P247, DOI [10.5802/ambp.312, DOI 10.5802/AMBP.312]
[2]  
Dunkl C F, 2014, ORTHOGONAL POLYNOMIA, P155
[3]  
Li Zh K., MATH METHODS APPL SC
[4]   Harmonic Analysis Associated with the One-Dimensional Dunkl Transform [J].
Li, Zhongkai ;
Liao, Jianquan .
CONSTRUCTIVE APPROXIMATION, 2013, 37 (02) :233-281
[5]  
Rosler M., 1995, PROBABILITY MEASURES, P292
[6]   Littlewood-Paley operators associated with the Dunkl operator on R [J].
Soltani, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (01) :205-225
[7]  
Stein E. M., 1993, HARMONIC ANAL REAL V
[8]  
Stein E. M., 1970, Singular Integrals and Differentiability Properties of Functions, V30
[9]  
Stein E. M., 1958, T AM MATH SOC, V88, P430, DOI DOI 10.1090/S0002-9947-1958-0112932-2
[10]  
STEIN EM, 1970, TOPICS HARMONIC ANAL, V63