Evidence of singularities for a family of contour dynamics equations

被引:76
作者
Córdoba, D
Fontelos, MA
Mancho, AM
Rodrigo, JL
机构
[1] CSIC, Inst Matemat & Fis Fundamental, Madrid 28006, Spain
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
alpha-patches; quasi-geostrophic equation; blow-up; Euler equations; self-similar behavior;
D O I
10.1073/pnas.0501977102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we show evidence of the existence of singularities developing in finite time for a class of contour dynamics equations depending on a parameter 0 < alpha <= 1. The limiting case alpha --> 0 corresponds to 2D Euler equations, and alpha = 1 corresponds to the surface quasi-geostrophic equation. The singularity is point-like, and it is approached in a self-similar manner.
引用
收藏
页码:5949 / 5952
页数:4
相关论文
共 13 条
[1]   GLOBAL REGULARITY FOR VORTEX PATCHES [J].
BERTOZZI, AL ;
CONSTANTIN, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :19-28
[2]   THE OBSERVATION OF SINGULARITIES IN THE BOUNDARY OF PATCHES OF CONSTANT VORTICITY [J].
BUTTKE, TF .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (07) :1283-1285
[3]  
CHEMIN JY, 1993, ANN SCI ECOLE NORM S, V26, P517
[4]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[5]   Almost sharp fronts for the surface quasi-geostrophic equation [J].
Córdoba, D ;
Fefferman, C ;
Rodrigo, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2687-2691
[6]   CONTOUR DYNAMICS AND CONTOUR SURGERY - NUMERICAL ALGORITHMS FOR EXTENDED, HIGH-RESOLUTION MODELING OF VORTEX DYNAMICS IN TWO-DIMENSIONAL, INVISCID, INCOMPRESSIBLE FLOWS [J].
DRITSCHEL, DG .
COMPUTER PHYSICS REPORTS, 1989, 10 (03) :77-146
[7]   DOES CONTOUR DYNAMICS GO SINGULAR [J].
DRITSCHEL, DG ;
MCINTYRE, ME .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (05) :748-753
[8]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222
[9]  
MAJDA AJ, 2002, CAMBRIDGE TEXTS APPL, V27
[10]  
PEDLOSKY J, 1987, GEOPHYSICAL FLUID DY, P653