Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

被引:13
作者
Nutku, Y [1 ]
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 27期
关键词
D O I
10.1088/0305-4470/36/27/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
引用
收藏
页码:7559 / 7567
页数:9
相关论文
共 50 条
[41]   Integrable perturbations of the harmonic oscillator and Poisson pencils [J].
Marciniak, K ;
Rauch-Wojciechowski, S .
INVERSE PROBLEMS, 2001, 17 (02) :191-209
[42]   On non-degenerate differential-geometric Poisson brackets of third order [J].
Balandin, AV ;
Potëmin, GV .
RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (05) :976-977
[44]   Quantization of a free particle interacting linearly with a harmonic oscillator [J].
Mainiero, Thomas ;
Porter, Mason A. .
CHAOS, 2007, 17 (04)
[45]   Note to the quantization of the harmonic oscillator in the magnetic field. [J].
Sexl, Th. .
ZEITSCHRIFT FUR PHYSIK, 1928, 48 (9-10) :611-613
[46]   QUANTIZATION OF THE RADIATION-DAMPED HARMONIC-OSCILLATOR [J].
ENGLERT, BG .
ANNALS OF PHYSICS, 1980, 129 (01) :1-21
[47]   GEOMETRIC-QUANTIZATION OF THE NONISOTROPIC HARMONIC-OSCILLATOR [J].
MARATHE, KB ;
MARTUCCI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (01) :1-12
[48]   Quantization of Floreanini-Jackiw chiral harmonic oscillator [J].
Baleanu, D ;
Güler, Y .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (09) :1023-1028
[49]   ON THE PATH INTEGRAL QUANTIZATION OF THE DAMPED HARMONIC-OSCILLATOR [J].
GERRY, CC .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1820-1822
[50]   Calculation of four-particle harmonic-oscillator transformation brackets [J].
Germanas, D. ;
Kalinauskas, R. K. ;
Mickevicius, S. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (02) :420-425