Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

被引:13
作者
Nutku, Y [1 ]
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 27期
关键词
D O I
10.1088/0305-4470/36/27/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
引用
收藏
页码:7559 / 7567
页数:9
相关论文
共 50 条
[31]   The deformation quantization of certain super-Poisson brackets and BRST cohomology [J].
Bordemann, M .
CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 :45-68
[32]   CORRECTIONS TO THE CLASSICAL DYNAMICS AND QUANTIZATION CONDITIONS ARISING AT THE DEFORMATION OF POISSON BRACKETS [J].
VOROBIEV, IM ;
KARASEV, MV .
DOKLADY AKADEMII NAUK SSSR, 1987, 297 (06) :1294-1298
[33]   Superstatistics and canonical quantization of the damped harmonic oscillator [J].
Sargolzaeipor, S. ;
Hassanabadi, H. ;
Chung, W. S. .
MODERN PHYSICS LETTERS A, 2019, 34 (14)
[34]   A canonical approach to the quantization of the damped harmonic oscillator [J].
Banerjee, R ;
Mukherjee, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27) :5591-5598
[35]   ON THE QUANTIZATION OF LINEARLY DAMPED HARMONIC-OSCILLATOR [J].
SRIVASTAVA, S ;
VISHWAMITTAR ;
MINHAS, IS .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) :1510-1515
[36]   QUANTIZATION OF LINEARLY DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICAL REVIEW A, 1977, 16 (05) :2126-2134
[37]   COMMENT ON ENERGY QUANTIZATION AND SIMPLE HARMONIC OSCILLATOR [J].
INTEMANN, RL .
AMERICAN JOURNAL OF PHYSICS, 1973, 41 (05) :717-718
[38]   Harmonic oscillator quantization: kinetic theory approach [J].
Denny, M .
EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (02) :183-190
[39]   Band structure in the polymer quantization of the harmonic oscillator [J].
Fernando Barbero G, J. ;
Prieto, Jorge ;
Villasenor, Eduardo J. S. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (16)
[40]   Alternative approach to the quantization of the damped harmonic oscillator [J].
Blacker, Matthew J. ;
Tilbrook, David L. .
PHYSICAL REVIEW A, 2021, 104 (03)