Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

被引:13
作者
Nutku, Y [1 ]
机构
[1] Feza Gursey Inst, TR-81220 Istanbul, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 27期
关键词
D O I
10.1088/0305-4470/36/27/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.
引用
收藏
页码:7559 / 7567
页数:9
相关论文
共 50 条
[21]   ENERGY QUANTIZATION AND SIMPLE HARMONIC OSCILLATOR [J].
SWENSON, RJ ;
HERMANSON, JC .
AMERICAN JOURNAL OF PHYSICS, 1972, 40 (09) :1258-+
[22]   A nonstandard geometric quantization of the harmonic oscillator [J].
Lim, Adrian P. C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
[23]   The damped harmonic oscillator in deformation quantization [J].
Dito, G ;
Turrubiates, FJ .
PHYSICS LETTERS A, 2006, 352 (4-5) :309-316
[24]   Orbit quantization in a retarded harmonic oscillator [J].
Lopez, Alvaro G. .
CHAOS SOLITONS & FRACTALS, 2023, 170
[25]   Quantization of the damped harmonic oscillator revisited [J].
Baldiotti, M. C. ;
Fresneda, R. ;
Gitman, D. M. .
PHYSICS LETTERS A, 2011, 375 (15) :1630-1636
[26]   QUANTIZATION OF THE DAMPED HARMONIC-OSCILLATOR [J].
GZYL, H .
PHYSICAL REVIEW A, 1983, 27 (05) :2297-2299
[27]   Harmonic oscillator tensors. V. The doubly degenerate harmonic oscillator [J].
Palting, P .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1998, 67 (06) :343-357
[28]   SUM-RULES FOR HARMONIC-OSCILLATOR BRACKETS [J].
SHLOMO, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15) :3463-3469
[29]   Calculation of harmonic oscillator brackets in SU(3) basis [J].
Kalinauskas, Ramutis Kazys ;
Stepsys, Augustinas ;
Germanas, Darius ;
Mickevicius, Saulius .
NUCLEAR PHYSICS A, 2025, 1056
[30]   Dynamical Yang-Baxter equation and quantization of certain Poisson brackets [J].
Karolinsky, E ;
Stolin, A ;
Tarasov, V .
Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 :175-182