Grain size effect on radiation tolerance of nanocrystalline Mo

被引:75
作者
Cheng, G. M. [1 ]
Xu, W. Z. [1 ]
Wang, Y. Q. [2 ]
Misra, A. [3 ]
Zhu, Y. T. [1 ]
机构
[1] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA
[2] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Radiation damage; Body-centered cubic (bcc); Nanocrystalline; Grain size effect; Magnetron sputtering; MICROSCOPE IMAGE-CONTRAST; SMALL DISLOCATION LOOPS; THEORETICAL PREDICTIONS; DEFORMATION MECHANISMS; DAMAGE; HELIUM; TEMPERATURE; STRENGTH; VACANCY; STRAIN;
D O I
10.1016/j.scriptamat.2016.06.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report a significant grain size effect on radiation tolerance of nanocrystalline Mo under He ion irradiation. Irradiation -induced dislocation loops mainly contribute to the irradiation-induced hardening of Mo films with grain size of >90 nm, while few such loops in those with grain size of <90 nm. The hardness increment after irradiation decreases with decreasing the grain size, and approaches zero at the grain size of 25 nm. Also, the size and the density of irradiation-induced He bubbles decrease as the grain size decreases. This observation provides direct evidence that nanocrystalline body-centered-cubic metals have greater radiation tolerance than their ultra-fine-grained or coarse-grained counterparts. Published by Elsevier Ltd.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 44 条
[1]   Controlling Radiation Damage [J].
Ackland, Graeme .
SCIENCE, 2010, 327 (5973) :1587-1588
[2]   Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation [J].
Allen, T. R. ;
Gan, J. ;
Cole, J. I. ;
Miller, M. K. ;
Busby, J. T. ;
Shutthanandan, S. ;
Thevuthasan, S. .
JOURNAL OF NUCLEAR MATERIALS, 2008, 375 (01) :26-37
[3]   Materials challenges for nuclear systems [J].
Allen, Todd ;
Busby, Jeremy ;
Meyer, Mitch ;
Petti, David .
MATERIALS TODAY, 2010, 13 (12) :14-23
[4]  
[Anonymous], 2002, GIF 002-00
[5]   Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission [J].
Bai, Xian-Ming ;
Voter, Arthur F. ;
Hoagland, Richard G. ;
Nastasi, Michael ;
Uberuaga, Blas P. .
SCIENCE, 2010, 327 (5973) :1631-1634
[6]   Status of R&D activities on materials for fusion power reactors [J].
Baluc, N. ;
Abe, K. ;
Boutard, J. L. ;
Chernov, V. M. ;
Diegele, E. ;
Jitsukawa, S. ;
Kimura, A. ;
Klueh, R. L. ;
Kohyama, A. ;
Kurtz, R. J. ;
Lässer, R. ;
Matsui, H. ;
Möslang, A. ;
Muroga, T. ;
Odette, G. R. ;
Tran, M. Q. ;
Van der Schaaf, B. ;
Wu, Y. ;
Yu, I. ;
Zinkle, S. J. .
NUCLEAR FUSION, 2007, 47 (10) :S696-S717
[7]   Status of reduced activation ferritic/martensitic steel development [J].
Baluc, N. ;
Gelles, D. S. ;
Jitsukawa, S. ;
Kimura, A. ;
Klueh, R. L. ;
Odette, G. R. ;
van der Schaaf, B. ;
Yu, Jinnan .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 (SPEC. ISS.) :33-41
[8]   Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron [J].
Beeler, Benjamin ;
Asta, Mark ;
Hosemann, Peter ;
Gronbech-Jensen, Niels .
JOURNAL OF NUCLEAR MATERIALS, 2016, 474 :113-119
[9]   Are Nanoporous Materials Radiation Resistant? [J].
Bringa, E. M. ;
Monk, J. D. ;
Caro, A. ;
Misra, A. ;
Zepeda-Ruiz, L. ;
Duchaineau, M. ;
Abraham, F. ;
Nastasi, M. ;
Picraux, S. T. ;
Wang, Y. Q. ;
Farkas, D. .
NANO LETTERS, 2012, 12 (07) :3351-3355
[10]   Grain Size Effect on Deformation Mechanisms of Nanocrystalline bcc Metals [J].
Cheng, G. M. ;
Jian, W. W. ;
Xu, W. Z. ;
Yuan, H. ;
Millett, P. C. ;
Zhu, Y. T. .
MATERIALS RESEARCH LETTERS, 2013, 1 (01) :26-31